Journal of Paleolimnology

, Volume 59, Issue 2, pp 189–199 | Cite as

Wind-driven waterbodies: a new category of lake within an alternative sedimentologically-based lake classification

  • A. Nutz
  • M. Schuster
  • J.-F. Ghienne
  • C. Roquin
  • F. Bouchette
Original paper


Lakes are common natural systems for which sedimentation is considered to be relatively simple, generally dominated by fluvial processes along the margin and prevailing low-energy settling in the central, deeper parts. However, for many lakes, higher-energy wind-driven processes dominate. As such, a new category of lakes is proposed, herein referred to as wind-driven waterbodies (WWB). WWB display a sedimentation largely dominated by wave related processes and wind-induced lake-scale water circulation evidenced by the construction of beach ridges, spits or cuspate spits along their shorelines, and by sediment drifts, sedimentary shelf progradation and erosional surfaces in their deeper, offshore domains. WWB are observed worldwide, they share a common physiography that favours wind-forced hydrodynamics and related sedimentation patterns. This physiography is expressed by the IWWB index, a ratio of the maximum representative fetch relative to mean basin depth. It is proposed that an index value greater than three favours the evolution of a lake as a WWB. The WWB concept represents a new end-member in an alternative, sedimentologically-based lake classification that is proposed in this paper.


Wind-induced hydrodynamics Beach ridges Spits Sediment drifts Lakes 



This study is supported by the GLADYS-SOLTC project ( and, ANR-KUNSHEN (ANR-2010-006), and NUCLEASPIT/PEPS-IN2P3. We acknowledge financial support from the CNRS-INSU (action SYSTER), and from “Fondation Université de Strasbourg” and “Cercle Gutenberg”. Finally, we are grateful to anonymous reviewer 1 and Steven Andrews for their useful reviews of the manuscript.


  1. Adams KD (2010) Lake levels and sedimentary environments during deposition of the Trego Hot Springs and Wono tephras in the Lake Lahontan basin, Nevada, USA. Quat Res 73:118–129CrossRefGoogle Scholar
  2. Adams KD, Wesnousky SG (1998) Shoreline processes and the age of the Lake Lahontan highstand in the Jessup embayment, Nevada. Geol Soc Am Bull 110:1318–1332CrossRefGoogle Scholar
  3. Allan JC, Kirk RM (2000) Wind wave characteristics at Lake Dunstan, South Island, New Zealand. N Z J Mar Freshw Res 34:573–591CrossRefGoogle Scholar
  4. Allard J, Bertin X, Chaumillon E, Pouget F (2008) Sand spit rhythmic development: a potential record of wave climate variations? Arçay Spit, western coast of France. Mar Geol 253:107–131CrossRefGoogle Scholar
  5. Ashton A, Murray AB, Littlewood R, Lewis DA, Hong P (2009) Fetch-limited self-organization of elongate water bodies. Geology 37:187–190CrossRefGoogle Scholar
  6. Blair T (1999) Sedimentology of gravely Lake Lahontan highstand shoreline deposits, Churchill Butte, Nevada, USA. Sediment Geol 123:199–218CrossRefGoogle Scholar
  7. Boomer I, Aladin N, Plotnikov I, Whatley R (2000) The palaeolimnology of the Aral Sea: A review. Quat Sci Rev 19:1259–1278CrossRefGoogle Scholar
  8. Bouchette F, Seguret M, Moussine-Pouchkine A (2001) Coarse carbonate breccias as a result of water-wave cyclic loading (uppermost Jurassic-South-East Basin, France). Sedimentology 48:767–789CrossRefGoogle Scholar
  9. Bouchette F, Schuster M, Ghienne J-F, Denamiel C, Roquin C, Abderamane M, Marsaleix P, Duringer P (2010) Hydrodynamics in the Holocene lake MegaChad. Quat Res 73:226–236CrossRefGoogle Scholar
  10. Branstator DK (2009) Origins of types of lake basins. In: Likens GE (ed) Encyclopedia of inland waters, vol 1. Academic Press, London, pp 613–624CrossRefGoogle Scholar
  11. Butzer KW (1980) The Holocene lake plain of North Rudolph, East Africa. Phys Geogr 1:42–58Google Scholar
  12. Carroll AR, Bohacs K (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology 27:99–102CrossRefGoogle Scholar
  13. Cohen AS (2003) Paleolimnology. The history and evolution of lake systems. Oxford University Press, New YorkGoogle Scholar
  14. Currey DR (1990) Quaternary palaeolakes in the evolution of semidesert basins, with special emphasis on Lake Bonneville and the Great Basin, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 76:189–214CrossRefGoogle Scholar
  15. Dam G, Surlik F (1992) Forced regressions in a large wave- and storm-dominated anoxic lake, Rhaetian-Sinemurian Kap Stewart Formation, East Greenland. Geology 20:749–752CrossRefGoogle Scholar
  16. Dam G, Surlik F (1993) Cyclic sedimentation in a large wave- and storm-dominated anoxic lake; Kap Stewart Formation (Rhaetian-Sinemurian), Jameson Land, East Greenland. IAS Spec Publ 18:419–448Google Scholar
  17. Davidson-Arnott R, Van Heyningen A (2003) Migration and sedimentology of longshore sandwaves, Long Point, Lake Erie, Canada. Sedimentology 50:1123–1137CrossRefGoogle Scholar
  18. Dean RG, Dalrymple RA (1991) Water wave mechanics for engineers and scientists. Advanced series on ocean engineering 2. World Scientific Publishing, SingaporeCrossRefGoogle Scholar
  19. Desiage P-A, Lajeunesse P, St-Onge G, Normandeau A, Ledoux G, Guyard H, Pienitz R (2015) Deglacial and postglacial evolutionof the Pingualuit Crater Lake basin, northern Québec (Canada). Geomorphology 248:327–343CrossRefGoogle Scholar
  20. Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397CrossRefGoogle Scholar
  21. Fisher RL (1955) Cuspate spits of Saint Lawrence Island, Alaska. J Geol 63:133–142CrossRefGoogle Scholar
  22. Garcin Y, Melnick D, Strecker MR, Olago D, Tiercelin J-J (2012) East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift. Earth Planet Sci Lett 331–332:322–334CrossRefGoogle Scholar
  23. Ghienne J-F, Schuster M, Bernard A, Duringer P, Brunet M (2002) The Holocene giant Lake Chad revealed by digital elevation models. Quat Int 87:81–85CrossRefGoogle Scholar
  24. Gilbert GK (1890) Lake Bonneville. US Geol Surv Mono, vol 1. 438 ppGoogle Scholar
  25. Håkanson L (1982) Bottom dynamics in lakes. Hydrobiologia 91:9–22CrossRefGoogle Scholar
  26. Håkanson L, Jansson M (1983) Principles of lake sedimentology. The Blackburn Press, CaldwellCrossRefGoogle Scholar
  27. Hanson JK (2007) Lakes. Chelsea House, New YorkGoogle Scholar
  28. Holcombe TL, Taylor LA, Reid DF, Warren JS, Vincent PA, Herdendorf CE (2003) Revised Lake Erie postglacial lake level history based on new detailed bathymetry. J Gt Lakes Res 29:681–704CrossRefGoogle Scholar
  29. Hutchinson GE (1957) A treatise on limnology, vol. 1. Geography, physics and chemistry. Wiley, New YorkGoogle Scholar
  30. Johnson TC, Halfman JD, Rosendahl BR, Lister GS (1987) Climatic and tectonic effects on sedimentation in a rift-valley lake: evidence from high-resolution seismic profiles, Lake Turkana, Kenya. Geol Soc Am Bull 98:439–447CrossRefGoogle Scholar
  31. Kelts K, Zao CK, Lister G, Qing YJ, Hong GZ, Niessen F, Bonani G (1989) Geological fingerprints of climate history: a cooperative study of Qinghai Lake, China. Eclogae Geol Helv 82:167–182Google Scholar
  32. Komatsu G, Brantingham P, Olsen J, Bake V (2001) Paleoshoreline geomorphology of Boon Tsagaan Nuur, Tsagaan Nuur and Orog Nuur: the Valley of Lakes, Mongolia. Geomorphology 39:83–98CrossRefGoogle Scholar
  33. Krist FJ, Schaetzl R (2001) Paleowind (11,000 BP) directions derived from lake spits in northern Michigan. Geomorphology 38:1–18CrossRefGoogle Scholar
  34. Lajeunesse P, Sinkunas B, Morissette A, Normandeau A, Joyal G, St-Onge G, Locat J (in press) Large-scale seismically-induced mass-movements in a former glacial lake basin: Lake Témiscouata, northeastern Appalachians (eastern Canada). Mar GeolGoogle Scholar
  35. Lewis WM Jr (1983) A revised classification of lakes based on mixing. Can J Fish Aquat Sci 40:1779–1787CrossRefGoogle Scholar
  36. Manley PL, Manley TO, Hayo K, Cronin T (2011) Small-scale lacustrine drifts in Lake Champlain, Vermont. J Gt Lakes Res 38:88–100CrossRefGoogle Scholar
  37. Matishov G (2006) New data on bottom geomorphology of the Sea of Azov. Dokl Earth Sci 409A:853–858CrossRefGoogle Scholar
  38. Matoshko A, Gozhik P, Semenenko V (2009) Late Cenozoic fluvial development within the Sea of Azov and Black Sea coastal plains. Glob Planet Change 68:270–287CrossRefGoogle Scholar
  39. Nielsen L, Johannessen P (2009) Facies architecture and depositional processes of the Holocene-Recent accretionary forced regressive Skagen spit system, Denmark. Sedimentology 56:935–968CrossRefGoogle Scholar
  40. Nordstrom KF, Jackson NL (2012) Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: a review. Earth Sci Rev 111:232–247CrossRefGoogle Scholar
  41. Normandeau A, Lajeunesse P, Philibert G (2013) Late-Quaternary morphostratigraphy of the Lake St-Joseph (southeastern Canadian Shield): evolution from a semi-enclosed glacimarine basin to a postglacial lake. Sed Geol 295:38–52CrossRefGoogle Scholar
  42. Nutz A, Ghienne J-F, Schuster M, Roquin C, Raynal O, Bouchette F, Duringer P, Cousineau PA (2014) Seismic-stratigraphic record of a deglaciation sequence: from the marine Laflamme Gulf to Lake Saint-Jean (late Quaternary, Québec, Canada). Boreas 43:309–329CrossRefGoogle Scholar
  43. Nutz A, Ghienne J-F, Schuster M, Dietrich P, Roquin C, Hay MB, Bouchette F, Cousineau PA (2015a) Forced regressive deposits of a deglaciation sequence: example from the Late Quaternary succession in the Lake Saint-Jean basin (Québec, Canada). Sedimentology 62:1573–1610CrossRefGoogle Scholar
  44. Nutz A, Schuster M, Ghienne J-F, Roquin C, Hay MB, Rétif F, Certain R, Robin N, Raynal O, Cousineau PA, SIROCCO Team Bouchette F (2015b) Wind-driven bottom currents and related sedimentary bodies in Lake Saint-Jean (Québec, Canada). Geol Soc Am Bull 127:1194–1208CrossRefGoogle Scholar
  45. Raynal O, Bouchette F, Certain R, Séranne M, Dezileau L, Sabatier P, Lofi J, Bui Xuan Hy A, Briqueu L, Pezard P, Tessier B (2009) Control of alongshore-oriented sand spits on the dynamics of a wave-dominated coastal system (Holocene deposits, northern Gulf of Lions, France). Mar Geol 264:242–257CrossRefGoogle Scholar
  46. Reid I, Frostick LE (1985) Beach orientation, bar morphology and the concentration of metalliferous placer deposits: a case study, Lake Turkana, N Kenya. J Geol Soc Lond 142:837–848CrossRefGoogle Scholar
  47. Renaut RW, Owen RB (1991) Shore-zone sedimentation and facies in a closed rift lake: the Holocene beach deposits of Lake Bogoria, Kenya. IAS Spec Publ 13:175–195Google Scholar
  48. Rowan DJ, Kalff J, Rasmussen JB (1992) Estimating the mud deposition boundary depth in lakes from wave theory. Can J Fish Aquat Sci 49:2490–2497CrossRefGoogle Scholar
  49. Saylor JH, Miller GS (1987) Studies of large-scale currents in Lake Erie. J Gt Lake Res 13:487–514CrossRefGoogle Scholar
  50. Schnellmann M, Anselmetti FS, Giardini D, McKenzie JA, Ward SN (2002) Prehistoric earthquake history revealed by lacustrine slump deposits. Geology 30:1131–1134CrossRefGoogle Scholar
  51. Schuster M, Duringer P, Ghienne J-F, Vignaud P, Beauvilain A, Mackaye HT, Brunet M (2003) Coastal conglomerates around the Hadjer El Khamis inselbergs (western Chad, central Africa): new evidence for Lake Mega-Chad episodes. Earth Surf Proc Land 28:1059–1069CrossRefGoogle Scholar
  52. Schuster M, Roquin C, Brunet M, Duringer P, Fontugne M, Mackaye H, Vignaud P, Ghienne J-F (2005) Holocene Lake Mega-Chad palaeoshorelines from space. Quat Sci Rev 24:1821–1827CrossRefGoogle Scholar
  53. Schuster M, Duringer P, Ghienne J-F, Roquin C, Sepulchre P, Moussa A, Lebatard AE, Mackaye HT, Likius A, Vignaud P, Brunet M (2009) Chad Basin: paleoenvironments of the Sahara since the Late Miocene. C R Geosci 341:603–611CrossRefGoogle Scholar
  54. Shan X, Yu X, Clift PD, Tan C, Jin L, Li M, Li W (2015) The ground penetrating radar facies and architecture of a paleo-spit from Huangqihai Lake, North China: implications for genesis and evolution. Sed Geol 323:1–14CrossRefGoogle Scholar
  55. Sly PG (1978) Sedimentary processes in lakes. In: Lerman A (ed) Lakes: Chemistry, Geology, Physics. Springer, Berlin, pp 65–89CrossRefGoogle Scholar
  56. Stewart CJ, Davidson-Arnott RG (1988) Morphology, formation and migration of longshore sandwaves; Long Point, Lake Erie, Canada. Mar Geol 81:63–77CrossRefGoogle Scholar
  57. Wagner B, Aufgebauer A, Vogel H, Zanchetta G, Sulpizio R, Damaschke M (2012) Late Pleistocene and Holocene contourite drift in Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quat Int 274:112–121CrossRefGoogle Scholar
  58. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San DiegoGoogle Scholar
  59. Zecchin M, Caffau M, Civile D, Roda C (2010) Anatomy of a late Pleistocene clinoformal sedimentary body (Le Castella, Calabria, southern Italy): a case of prograding spit system? Sed Geol 223:291–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Nutz
    • 1
  • M. Schuster
    • 1
  • J.-F. Ghienne
    • 1
  • C. Roquin
    • 1
  • F. Bouchette
    • 2
  1. 1.Institut de Physique du Globe de Strasbourg, UMR 7516CNRS-Université de Strasbourg, Ecole et Observatoire des Sciences de la TerreStrasbourgFrance
  2. 2.Géoscience-MUniversité Montpellier II et CNRSMontpellier Cedex 5France

Personalised recommendations