Skip to main content

Late quaternary hydrological changes at Tangra Yumco, Tibetan Plateau: a compound-specific isotope-based quantification of lake level changes

Abstract

Lake level fluctuations are important features in paleo-reconstructions that can be linked to past climate changes. Closed-basin lakes on the south-central Tibetan Plateau record the balance between monsoonal precipitation and evaporative loss. To date, most studies provide only qualitative estimates of past hydrological changes. For the first time, we applied hydrogen isotopes (δD) of aquatic and terrestrial n-alkanes to quantify lake volume changes of Tangra Yumco and compared values to newly calculated lake volumes of Nam Co. We also used carbon isotopes of sedimentary n-alkanes to reveal past climate and environmental conditions around the lake. The water volume of Tangra Yumco changed by 146 km3 in the past 17.42 cal ka. Lake volume increased in two steps, the first mainly initiated by glacial meltwater input after 16 cal ka BP, and to a minor extent by first strengthening of the Asian Summer Monsoon (ASM). The second increase was caused by intensified summer monsoon precipitation at 11.45 cal ka BP. After 8.0 cal ka BP, lake volume decreased because of arid conditions, until an increase at 0.8 cal ka BP that was probably linked to a wet spell during the Little Ice Age. The lake level changes of Tangra Yumco and Nam Co were affected simultaneously by the ASM, although their amplitudes differed because of different local conditions, such as basin morphology or the blocking effect of neighboring mountains, which influences the rainout of air masses and wind-induced evaporation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahlborn M, Haberzettl T, Wang J, Fürstenberg S, Mäusbacher R, Mazzocco J, Pierson J, Zhu L, Frenzel P (2016) Holocene lake level history of the Tangra Yumco lake system, southern-central Tibetan Plateau. The Holocene 26:176–187

    Article  Google Scholar 

  2. Aichner B, Wilkes H, Herzschuh U, Mischke S, Zhang C (2010) Biomarker and compound-specific delta C-13 evidence for changing environmental conditions and carbon limitation at Lake Koucha, eastern Tibetan Plateau. J Paleolimnol 43:873–899

    Article  Google Scholar 

  3. An ZS, Clemens SC, Shen J, Qiang XK, Jin ZD, Sun YB, Prell WL, Luo JJ, Wang SM, Xu H, Cai YJ, Zhou WJ, Liu XD, Liu WG, Shi ZG, Yan LB, Xiao XY, Chang H, Wu F, Ai L, Lu FY (2011) Glacial-interglacial Indian summer monsoon dynamics. Science 333:719–723

    Article  Google Scholar 

  4. An Z, Colman SM, Zhou W, Li X, Brown ET, Jull AJT, Cai Y, Huang Y, Lu X, Chang H, Song Y, Sun Y, Xu H, Liu W, Jin Z, Liu X, Cheng P, Liu Y, Ai L, Li X, Liu X, Yan L, Shi Z, Wang X, Wu F, Qiang X, Dong J, Lu F, Xu X (2012) Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka. Sci Rep 2:619

    Google Scholar 

  5. Barnett TP, Dumenil L, Schlese U, Roeckner E (1988) The effect of eurasian snow cover on global climate. Science 239:504–507

    Article  Google Scholar 

  6. Berger A, Loutre MF (1991) Insolation values for the climate of the last 10000000 years. Quat Sci Rev 10:297–317

    Article  Google Scholar 

  7. Bintanja R, van de Wal RSW, Oerlemans J (2005) Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437:125–128

    Article  Google Scholar 

  8. Biskop S, Maussion F, Krause P, Fink M (2015) What are the key drivers of regional differences in the water balance on the Tibetan Plateau. Hydrol Earth Syst Sci Diss 2:4271–4314

    Article  Google Scholar 

  9. Caley T, Malaize B, Kageyama M, Landais A, Masson-Delmotte V (2013a) Bi-hemispheric forcing for Indo-Asian monsoon during glacial terminations. Quat Sci Rev 59:1–4

    Article  Google Scholar 

  10. Caley T, Zaragosi S, Bourget J, Martinez P, Malaize B, Eynaud F, Rossignol L, Garlan T, Ellouz-Zimmermann N (2013b) Southern Hemisphere imprint for Indo-Asian summer monsoons during the last glacial period as revealed by Arabian Sea productivity records. Biogeosciences 10:7347–7359

    Article  Google Scholar 

  11. Calvo E, Pelejero C, De Deckker P, Logan GA (2007) Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia. Geophys Res Lett 34:6

    Article  Google Scholar 

  12. Chen Y, Zong Y, Li B, Li S, Aitchison JC (2013) Shrinking lakes in Tibet linked to the weakening Asian monsoon in the past 8.2 ka. Quat Res 80:189–198

    Article  Google Scholar 

  13. Clark ID, Fritz P (1997) environmental isotopes in hydrogeology. Taylor & Francis, CRC Press, Boca Raton

    Google Scholar 

  14. Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: proc. Stable Isotopes in Oceanographic Studies and Paleotemperatures, 1965, Spoleto, Italy. edited by E. Tongiogi, pp 9-130, V. Lishi e F., Pisa

  15. Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments. Org Geochem 11:513–527

    Article  Google Scholar 

  16. Daut G, Mäusbacher R, Baade J, Gleixner G, Kroemer E, Mügler I, Wallner J, Wang J, Zhu L (2010) Late quaternary hydrological changes inferred from lake level fluctuations of Nam Co (Tibetan Plateau, China). Quat Int 218:86–93

    Article  Google Scholar 

  17. Doberschütz S, Frenzel P, Haberzettl T, Kasper T, Wang J, Zhu L, Daut G, Schwalb A, Mäusbacher R (2014) Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co (Xizang, China). J Paleolimnol 51:253–266

    Article  Google Scholar 

  18. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  19. Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  Google Scholar 

  20. Gao L, Hou J, Toney J, MacDonald D, Huang Y (2011) Mathematical modeling of the aquatic macrophyte inputs of mid-chain n-alkyl lipids to lake sediments: implications for interpreting compound specific hydrogen isotopic records. GCA 75:3781–3791

    Google Scholar 

  21. Gat JR, Levy Y (1978) Isotope hydrology of inland sabkhas in Bardawil area, Sinai. Limnol Oceanogr 23:841–850

    Article  Google Scholar 

  22. Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry 2. Elsevier, New York, pp 113–168

    Google Scholar 

  23. Günther F, Mügler I, Mäusbacher R, Daut G, Leopold K, Gerstmann UC, Xu B, Yao T, Gleixner G (2011) Response of δD values of sedimentary n-alkanes to variations in source water isotope signals and climate proxies at lake Nam Co, Tibetan Plateau. Quat Int 236:82–90

    Article  Google Scholar 

  24. Günther F, Aichner B, Siegwolf R, Xu B, Yao T, Gleixner G (2013) A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau. Quat Int 313–314:3–16

    Article  Google Scholar 

  25. Günther F, Witt R, Schouten S, Mäusbacher R, Daut G, Zhu L, Xu B, Yao T, Gleixner G (2015) Quaternary ecological responses and impacts of the Indian Ocean Summer Monsoon at Nam Co, Southern Tibetan Plateau. Quat Sci Rev 112:66–77

    Article  Google Scholar 

  26. Haberzettl T, Henkel K, Kasper T, Ahlborn M, Su Y, Wang J, Appel E, St-Onge G, Stoner J, Daut G, Zhu L, Mäusbacher R (2015) Independently dated paleomagnetic secular variation records from the Tibetan Plateau. Earth Planet Sci Lett 416:98–108

    Article  Google Scholar 

  27. Henkel K, Haberzettl T, St-Onge G, Wang J, Ahlborn M, Daut G, Zhu L, Mäusbacher R (2016) High-resolution paleomagnetic and sedimentological investigations on the Tibetan Plateau for the past 15.8 ka cal BP—the Tangra Yumco record. Geochem Geophys 17. doi: 10.1002/2015GC006023

  28. Herzschuh U (2006) Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat Sci Rev 25:163–178

    Article  Google Scholar 

  29. Huybers P, Wunsch C (2005) Obliquity pacing of the late Pleistocene glacial terminations. Nature 434:491–494

    Article  Google Scholar 

  30. Jacob J, Huang Y, Disnar JR, Sifeddine A, Boussafir M, Albuquerque ALS, Turcq B (2007) Paleohydrological changes during the last deglaciation in Northern Brazil. QSR 26:1004–1015

    Article  Google Scholar 

  31. Jung SJA, Kroon D, Ganssen G, Peeters F, Ganeshram R (2009) Enhanced Arabian Sea intermediate water flow during glacial North Atlantic cold phases. Earth Planet Sci Lett 280:220–228

    Article  Google Scholar 

  32. Kasper T, Haberzettl T, Doberschuetz S, Daut G, Wang J, Zhu L, Nowaczyk N, Maeusbacher R (2012) Indian ocean summer monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China). Quat Sci Rev 39:73–85

    Article  Google Scholar 

  33. Kasper T, Haberzettl T, Wang J, Daut G, Doberschütz S, Zhu L, Mäusbacher R (2015) Hydrological variations on the Central Tibetan Plateau since the last glacial maximum and their teleconnection to inter-regional and hemispheric climate variations. J Quat Sci 30:70–78

    Article  Google Scholar 

  34. Kong P, Na C, Brown R, Fabel D, Freeman S, Xiao W, Wang Y (2011) Cosmogenic 10Be and 26Al dating of paleolake shorelines in Tibet. J Asian Earth Sci 41:263–273

    Article  Google Scholar 

  35. Kutzbach JE, Guetter PJ (1986) The influence of changing orbital parameters and surface boundary conditions on climate simulations for the Past 18 000 Years. J Atmos Sci 43:1726–1759

    Article  Google Scholar 

  36. Liu J, Wang S, Yu S, Yang D, Zhang L (2009) Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Glob Planet Chang 67:209–217

    Article  Google Scholar 

  37. Long H, Lai Z, Frenzel P, Fuchs M, Haberzettl T (2012) Holocene moist period recorded by the chronostratigraphy of a lake sedimentary sequence from Lake Tangra Yumco on the south Tibetan Plateau. Quat Geochronol 10:136–142

    Article  Google Scholar 

  38. Majoube M (1971) Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur. J Chim Phys 197:1423–1436

    Google Scholar 

  39. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  40. Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry—an overview of indicators of organic-matter sources and diagenesis in lake-sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  41. Miehe S, Miehe G, van Leeuwen JN, Wrozyna C, van der Knaap W, Duo L, Haberzettl T (2014) Persistence of Artemisia steppe in the Tangra Yumco Basin, west-central Tibet, China: despite or in consequence of Holocene lake-level changes? J Paleolimnol 51:267–285

    Article  Google Scholar 

  42. Monnin E, Indermühle A, Dällenbach A, Flückiger J, Stauffer B, Stocker TF, Raynaud D, Barnola J-M (2001) Atmospheric CO2 concentrations over the last glacial termination. Science 291:112–114

    Article  Google Scholar 

  43. Mügler I, Sachse D, Werner M, Xu BQ, Wu GJ, Yao TD, Gleixner G (2008) Effect of lake evaporation on delta D values of lacustrine n-alkanes: a comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Org Geochem 39:711–729

    Article  Google Scholar 

  44. Mügler I, Gleixner G, Günther F, Mausbacher R, Daut G, Schutt B, Berking J, Schwalb A, Schwark L, Xu B, Yao T, Zhu L, Yi C (2010) A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet. J Paleolimnol 43:625–648

    Article  Google Scholar 

  45. Rades EF, Hetzel R, Xu Q, Ding L (2013) Constraining Holocene lake-level highstands on the Tibetan Plateau by 10Be exposure dating: a case study at Tangra Yumco, southern Tibet. Quat Sci Rev 82:68–77

    Article  Google Scholar 

  46. Sachse D, Radke J, Gleixner G (2006) delta D values of individual n-alkanes from terrestrial plants along a climatic gradient—implications for the sedimentary biomarker record. Org Geochem 37:469–483

    Article  Google Scholar 

  47. Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE, Feakins SJ, Freeman KH, Magill CR, McInerney FA, van der Meer Marcel TJ, Polissar P, Robins RJ, Sachs JP, Schmidt H-L, Sessions AL, White James WC, West JB, Kahmen A (2012) Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu Rev Earth Planet Sci 40:221–249

    Article  Google Scholar 

  48. Saraswat R, Nigam R, Weldeab S, Mackensen A, Naidu PD (2005) A first look at past sea surface temperatures in the equatorial Indian Ocean from Mg/Ca in foraminifera. Geophys Res Lett 32:L24605

    Article  Google Scholar 

  49. Schmitt J, Schneider R, Elsig J, Leuenberger D, Lourantou A, Jrm C, Köhler P, Joos F, Stocker TF, Leuenberger M, Fischer H (2012) Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336:711–714

    Article  Google Scholar 

  50. Sirocko F, Sarnthein M, Erlenkeuser H, Lange H, Arnold M, Duplessy JC (1993) Century-scale events in monsoonal climate over the past 24,000 years. Nature 364:322–324

    Article  Google Scholar 

  51. Stuiver M, Grootes PM, Braziunas TF (1995) The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat Res 44:341–354

    Article  Google Scholar 

  52. Sun Q, Xie M, Shi L, Zhang Z, Lin Y, Shang W, Wang K, Li W, Liu J, Chu G (2013) Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China. J Paleolimnol 50:331–344

    Article  Google Scholar 

  53. Thompson LG, Yao T, Davis ME, Henderson KA, MosleyThompson E, Lin PN, Beer J, Synal HA, ColeDai J, Bolzan JF (1997) Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825

    Article  Google Scholar 

  54. Wang YJ, Cheng H, Edwards RL, Anti ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late pleistocene monsoon record from Hulu Cave, China. Science 294:2345–2348

    Article  Google Scholar 

  55. Wang J, Zhu L, Wang Y, Peng P, Ma Q, Haberzettl T, Kasper T, Matsunaka T, Nakamura T (2015) Variability of the 14C reservoir effect in lake Tangra Yumco, Central Tibet (China), determined from recent sedimentation rates and dating of plant fossils. Quat Int. doi:10.1016/j.quaint.2015.10.084

    Google Scholar 

  56. Yuan D, Cheng H, Edwards RL, Dykoski CA, Kelly MJ, Zhang M, Qing J, Lin Y, Wang Y, Wu J, Dorale JA, An Z, Cai Y (2004) Timing, duration, and transitions of the last interglacial Asian monsoon. Science 304:575–578

    Article  Google Scholar 

  57. Zhang Y, Yao T, Ma Y (2011) Climatic changes have led to significant expansion of endorheic lakes in Xizang (Tibet) since 1995. Sci Cold Arid Reg 3:0463–0467

    Google Scholar 

  58. Zhu L, Lü X, Wang J, Peng P, Kasper T, Daut G, Haberzettl T, Frenzel P, Li Q, Yang R, Schwalb A, Mäusbacher R (2015) Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Nature Sci Rep 5:13318

    Article  Google Scholar 

Download references

Acknowledgments

This project was carried out in cooperation with the Institute of Tibetan Plateau Research. We thank the German Research Foundation (DFG), which supported this research with grant Gl262/16-2 within priority program 1372 “Tibetan Plateau: Formation – Climate – Ecosystems (TiP).” We thank the Max Planck Society (MPG) and Chinese Academy of Sciences (CAS) for additional project funding. All scientists, technicians and other members of the TiP program are acknowledged for their support and assistance. Data sets reported here are available online at the PANGAEA database (www.pangaea.de).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Franziska Günther.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table 1 Concentration of sedimentary n-alkanes (XLSX 69 kb)

10933_2016_9887_MOESM2_ESM.xlsx

ESM Table 2 Hydrogen isotopes (δD) of sedimentary n-alkanes, evaporation-to-inflow (E/I) and calculated lake volumes (XLSX 84 kb)

ESM Table 3 Carbon isotopes (δ13C) of sedimentary n-alkanes (XLSX 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Günther, F., Thiele, A., Biskop, S. et al. Late quaternary hydrological changes at Tangra Yumco, Tibetan Plateau: a compound-specific isotope-based quantification of lake level changes. J Paleolimnol 55, 369–382 (2016). https://doi.org/10.1007/s10933-016-9887-1

Download citation

Keywords

  • n-Alkanes
  • Hydrogen isotopes (δD)
  • Carbon isotopes (δ13C)
  • Lake volume quantification
  • Asian summer monsoon
  • Nam Co