Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia

Abstract

Phytoplankton species are the primary producers in lakes and play important roles in food-web structures. Any shift in their diversity and productivity has an impact on other aquatic life forms. We use a range of environmental variables to explore the possible drivers influencing phytoplankton composition over the last 14,500 years in a temperate lake Lielais Svētiņu, eastern Latvia. Using pollen, non-pollen palynomorphs, temperature reconstructions and lithological information as proxies of environmental factors, we statistically test their associations with the fossil phytoplankton community composition. Our results reveal that during the Late Glacial, the climate warming, the decrease in landscape openness, and increase in organic matter were significant environmental variables affecting dynamics of phytoplankton communities , especially in the prevalence of Botryococcus, Tetraedron, Scenedesmus and Pediastrum. According to the Redundancy Analysis and Generalized Least Squares models, Pediastrum, Scenedesmus and Tetraedron were positively associated with waterlogging tolerance that indicates moist soils in surroundings of the lake, during the Early Holocene. The 8.2 ka cold event with a 2–3 °C cooling led to a strong environmental disturbance for nearly 700 years, indicated by an increased chlorophyta accumulation rates and a decrease in the organic matter. Our results indicate that Coelastrum reticulatum and C. polychordum are characteristic for the 8.2 ka cold event. Positive association between cyanobacteria and mean air summer temperature suggests that a warming favoured cyanobacteria over other phytoplankton taxa between 8000 and 4000 cal yr BP. High nutrient loads and water turbidity were more important for the dynamics of cyanobacteria from 4000 to 2000 cal yr BP. Human-driven trophic level change was recorded in the last 2000 years by abundances of fungi Sporormiella and Sordaria, and by the peaks of Gloeotrichia pisum, C. reticulatum and C. polychordum indicating eutrophication.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Apolinarska K, Woszczyk M, Obremska M (2011) Late Weichselian and Holocene palaeoenvironmental changes in northern Poland based on the Lake Skrzynka record. Boreas 41:292–307

  2. Barthelmes A, de Klerk P, Prager A, Theuerkauf M, Unerseher M, Joosten H (2012) Expanding NPP analysis to eutrophic and forested sites: significance of NPPs in a Holocene wood peat section (NE Germany). Rev Palaeobot Palynol 186:22–37

    Article  Google Scholar 

  3. Bellinger EG, Sigee DC (2010) Freshwater algae, identification and use as bioindicators. Wiley, Chippengam, p 271

    Book  Google Scholar 

  4. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170

    Article  Google Scholar 

  5. Bronk Ramsey C (2008) Deposition models for chronological records. Quat Sci Rev 27:42–60

  6. Broström A, Nielsen AB, Gaillard M-J, Kari Hjelle, Mazier F, Binney H, Bunting J, Fyfe R, Meltsov V, Poska A, Räsänen S, Soepboer W, von Stedingk H, Suutari H, Sugita S (2008) Pollen productivity estimates of key European plant taxa for quantitative reconstruction of past vegetation: a review. Veg Hist Archaeobot 17:461–478

    Article  Google Scholar 

  7. De Senerpont Domis LN, Elser JJ, Gsell AS, Huszar VLM, Ibelings BW, Jeppesen E, Kosten S, Mooij WM, Roland F, Sommer U, Van Donk E, Winder M, Lürling M (2013) Plankton dynamics under different climatic conditions in space and time. Freshw Biol 58:463–482

    Article  Google Scholar 

  8. Draveniece A (2009) Detecting changes in winter seasons in Latvia: the role of arctic air masses. Boreal Environ Res 6095:89–99

    Google Scholar 

  9. Elliott JA, Jones ID, Thackeray SJ (2006) Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559:401–411

    Article  Google Scholar 

  10. Engstrom DR, Fritz SC (2006) Coupling between primary terrestrial succession and the trophic development of lakes at Glacier Bay, Alaska. J Paleolimnol 35:873–880

    Article  Google Scholar 

  11. Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71

    Article  Google Scholar 

  12. Ferber LR, Levine SN, Lini A, Livingston GP (2004) Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen? Freshw Biol 49:690–708

    Article  Google Scholar 

  13. Fey SB, Mayer ZA, Davis SC, Cottingham KL (2010) Zooplankton grazing of Gloeotrichia echinulata and associated life history consequences. J Plankton Res 32:1337–1347

    Article  Google Scholar 

  14. Fritz SC, Anderson NJ (2013) The relative influences of climate and catchment processes on Holocene lake development in glaciated regions. J Paleolimnol 49:349–363

    Article  Google Scholar 

  15. Gallina N, Salmaso N, Morabito G, Beniston M (2013) Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquat Ecol 47:177–193

    Article  Google Scholar 

  16. Grimm EC (2011) Tilia version 1.7.16. Illinois State Museum, Research and Collections Center, Springfield

  17. Hammarlund D, Björck S, Buchardt B, Israelson C, Thomsen CT (2003) Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quat Sci Rev 22:353–370

    Article  Google Scholar 

  18. Hede MU, Rasmussen P, Noe-Nygaard N, Clarke AL, Vinebrooke RD, Olsen J (2010) Multiproxy evidence for terrestrial and aquatic ecosystem responses during the 8.2 ka event as recorded at Højby Sø, Denmark. Quat Res 73:485–496

    Article  Google Scholar 

  19. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  20. Jankovská V, Komárek J (2000) Indicative value of Pediastrum and other coccal green algae in Palaeoecology. Folia Geobot 35:59–82

    Article  Google Scholar 

  21. Kołaczek P, Zubek S, Błaszkowski J, Mleczko P, Margielewski W (2013) Erosion or plant succession—how to interpret the presence of arbuscular mycorrhizal fungi (Glomeromycota) spores in pollen profiles collected from mires. Rev Palaeobot Palynol 189:29–37

    Article  Google Scholar 

  22. Komárek J, Jankovská V (2001) Review of the Green Algal Genus Pediastrum; implication for pollen-analytical research. Bibl Phycol 108. J. Cramer, Berlin, p 127

  23. Lake BA, Wigdahl CR, Strock KE, Saros JE, Amirbahman A (2011) Multi-proxy paleolimnological assessment of biogeochemical versus food web controls on the trophic states of two shallow, mesotrophic lakes. J Paleolimnol 46:45–57

    Article  Google Scholar 

  24. Leavitt PR, Fritz SC, Anderson NJ, Baker PA, Blenckner T, Bunting L, Catalan J, Conley DJ, Hobbs WO, Jeppesen E, Korhola A, McGowan S, Rühland K, Rusak JA, Simpson GL, Solovieva N, Werne J (2009) Paleolimnological evidence of the effects on lakes of energy and mass transfer from climate and humans. Limnol Oceanogr 54:2330–2348

    Article  Google Scholar 

  25. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  26. Lürling M, Eshetu F, Faassen EJ, Kosten S, Huszar VLM (2013) Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw Biol 58:552–559

    Article  Google Scholar 

  27. Makohonienko M (2000) Przyrodnicza historia Gniezna. Prace Zakładu Biogeografii I Paleoekologii UAM. Homini, Bydgoszcz–Poznań (in Polish)

  28. Mazier F, Gaillard M-J, Kuneš P, Sugita S, Trondman A-K, Brosröm A (2012) Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. Rev Palaeobot Palynol 187:38–49

    Article  Google Scholar 

  29. Miola A (2012) Tools for non-pollen palynomorphs (NPPs) analysis: a list of quaternary NPP types and reference literature in English language (1972–2011). Rev Palaeobot Palynol 186:142–161

    Article  Google Scholar 

  30. Niinemets Ü, Valladares F (2006) Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol Monogr 76:521–547

    Article  Google Scholar 

  31. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013). Vegan: community ecology package. R package version 2.0-7. http://CRAN.R-project.org/package=vegan

  32. Padisák J (2004) Phytoplankton. In: O’Sullivan PE, Reynolds SC (eds) The lakes handbook, vol 1., Limnology and limnetic ecologyBlackwell publishing, Oxford, pp 251–308

    Google Scholar 

  33. Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    Article  Google Scholar 

  34. Pätynen A, Elliott JA, Kiuru P, Sarvala J, Ventelä A-M, Jones RI (2014) Modelling the impact of higher temperature on the phytoplankton of a boreal lake. Boreal Environ Res 19:66–78

    Google Scholar 

  35. Poska A, Meltsov V, Sugita S, Vassiljev J (2011) Relative pollen productivity estimates of major anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest zone (Estonia). Rev Palaeobot Palynol 167:30–39

    Article  Google Scholar 

  36. Ralska-Jasiewiczowa M, Goslar T, Rόżański K, Wacnik A, Czernik J, Chrόst L (2003) Very fast environmental changes at the Pleistocene/Holocene boundary, recorded in laminated sediments of Lake Gościąż, Poland. Palaeogeogr Palaeoclim Palaeoeco 193:225–247

    Article  Google Scholar 

  37. Randsalu-Wendrup L, Conley DJ, Carstensen J, Snowball I, Jessen C, Fritz SC (2012) Ecological regime shifts in Lake Kälksjön, Sweden, in response to abrupt climate change around the 8.2 ka cooling event. Ecosystems 15:1336–1350

    Article  Google Scholar 

  38. Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  Google Scholar 

  39. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  40. Reynolds CS (2006) Ecology of phytoplankton. In: Usher M, Saunders D, Peet R, Dobson A (eds) Ecology, Biodiversity and Conservation. Cambridge University Press, Cambridge, p 524

    Google Scholar 

  41. R Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  42. Salonen JS, Seppä H, Luoto M, Bjune AE, Birks HJB (2012) A North European pollen-climate calibration set: analysing the climate response of a biological proxy using novel regression tree methods. Quat Sci Rev 45:95–110

    Article  Google Scholar 

  43. Sarmaja-Korjonen K, Seppänen A, Bennike O (2006) Pediastrum algae from the classic late glacial Bølling Sø site, Denmark: response of aquatic biota to climate change. Rev Palaeobot Palynol 138:95–107

  44. Seppä H, Bjune AE, Telford RJ, Birks HJB, Veski S (2009) Last nine-thousand years of temperature variability in Northern Europe. Clim Past 5:523–535

    Article  Google Scholar 

  45. Stivrins N, Kalnina L, Zeimule S, Veski S (2014) Local and regional Holocene vegetation dynamics at two sites in eastern Latvia. Boreal Environ Res 19:310–322

    Google Scholar 

  46. Sugita S (2007) Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17:229–241

    Article  Google Scholar 

  47. Temperton VM, Grayston SJ, Jacson G, Barton CV, Millard P, Jarvis PG (2003) Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiol 23:1051–1059

    Article  Google Scholar 

  48. Ter Braak CJF, Juggins S (1993) Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270:485–502

    Article  Google Scholar 

  49. Turner F, Pott R, Schwarz A, Schwalb A (2014) Response of Pediastrum in German floodplain lakes to Late Glacial climate changes. J Paleolimnol 52:293–310

    Article  Google Scholar 

  50. van Geel B, Mur LR, Ralska-Jasiewiczowa M, Goslar T (1994) Fossil akinetes of Aphanizomenon and Anabaena as indicators for medieval phosphate-eutrophication of Lake Gościąż (Central Poland). Rev Paleobot Palyno 83:97–105

    Article  Google Scholar 

  51. Versteegh GJM, Blokker P (2004) Resistant macromolecules of extant and fossil microalgae. Phycol Res 52:325–339

    Article  Google Scholar 

  52. Veski S (1994) Stratigraphy of Holocene Pediastrum taxa from the sediments of Lake Maardu, North Estonia. Proc Est Acad Sci Geol 43:46–54

    Google Scholar 

  53. Veski S, Seppä H, Ojala AEK (2004) Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32:681–684

    Article  Google Scholar 

  54. Veski S, Amon L, Heinsalu A, Reitalu T, Saarse L, Stivrins N, Vassiljev J (2012) Lateglacial vegetation dynamics in the eastern Baltic region between 14,500 and 11,400 cal yr BP: a complete record since the Bølling (GI-1e) to the Holocene. Quat Sci Rev 40:39–53

    Article  Google Scholar 

  55. Veski S, Seppä H, Stančikaitė M, Zernitskaya V, Reitalu T, Gryguc G, Heinsalu A, Stivrins N, Amon L, Vassiljev J, Heiri O (2014) Quantitative summer and winter temperature reconstructions from pollen and chironomid data between 15–8 ka BP in the Baltic–Belarus area. Quat Int (in press)

  56. Wacnik A (2009) Vegetation development in the Lake Miłkowskie area, north-eastern Poland, from the Plenivistulian to the late Holocene. Acta Palaeobot 49:287–335

    Google Scholar 

  57. Weckström K, Weckström J, Yliniemi L-M, Korhola A (2010) The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. J Paleolimnol 43:61–73

    Article  Google Scholar 

  58. Winder M, Sommer U (2012) Phytoplankton response to a changing climate. Hydrobiologia 698:5–16

    Article  Google Scholar 

  59. Wood JR, Wilmshurst JM (2013) Accumulation rates or percentages? How to quantify Sporormiella and other coprophilous fungal spores to detect late Quaternary megafaunal extinction events. Quat Sci Rev 77:1–3

    Article  Google Scholar 

  60. Zelčs V, Markots A (2004) Deglaciation history of Latvia. In: Ehlers J, Gibbard PL (eds) Quaternary Glaciations—extent and chronology of glaciations. Elsiever, Amsterdam, pp 225–243

    Google Scholar 

  61. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

Research was supported by European Social Fund’s Doctoral Studies and International Programme DoRa, IUT 1-8, ETF 9031 and EBOR. Many thanks to Margus Voolma.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Stivrins.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stivrins, N., Kołaczek, P., Reitalu, T. et al. Phytoplankton response to the environmental and climatic variability in a temperate lake over the last 14,500 years in eastern Latvia. J Paleolimnol 54, 103–119 (2015). https://doi.org/10.1007/s10933-015-9840-8

Download citation

Keywords

  • Phytoplankton
  • Cyanobacteria
  • Non-pollen palynomorphs
  • Late Glacial of Weichselian
  • Holocene
  • Temperature