Journal of Paleolimnology

, Volume 53, Issue 2, pp 215–231 | Cite as

Quaternary climate change and Heinrich events in the southern Balkans: Lake Prespa diatom palaeolimnology from the last interglacial to present

  • Aleksandra Cvetkoska
  • Zlatko Levkov
  • Jane M. Reed
  • Bernd Wagner
  • Konstantinos Panagiotopoulos
  • Melanie J. Leng
  • Jack H. Lacey
Original paper


Lake Prespa, in the Balkans, contains an important palaeo-archive in a key location for understanding Quaternary climate variability in the transition between Mediterranean and central European climate zones. Previous palaeoenvironmental research on sediment cores indicates that the lake is highly sensitive to climate change and that diatoms are likely to be strong palaeohydrological proxies. Here, we present new results from diatom analysis of a ca. 91 ka sequence, core Co1215, which spans the time from the end of the last interglacial to the present. Fluctuations in the diatom data were driven primarily by changes in lake level, as a function of shifts in moisture availability. Warmer interglacial (MIS 5, MIS 1) and interstadial (MIS 3) phases exhibit higher lake levels in spite of enhanced evaporative concentration, underlining the importance of changes in precipitation regimes over time. Low lake levels during glacial phases indicate extreme aridity, common to all Mediterranean lakes. Evidence for fluctuations in trophic status is linked, in part, to lake-level change, but also reflects nutrient enrichment from catchment processes. MIS 5a is characterized by the highest lake productivity in the sequence, but low lake levels, which are ascribed primarily to very low precipitation. On a suborbital timescale, the diatoms provide evidence for correlation to the millennial-scale variability recorded in the Greenland oxygen isotope records and clearly reflect the impact of the Heinrich H6, H5 and H3–1 ice-rafting events, suggesting the dominant influence of North Atlantic forcing in this region. Although the highest-amplitude shift in the diatom assemblages occurs during the time of H4 (40–38 ka), it may be superimposed upon the impact of the 39.28 cal ka BP Campanian Ignimbrite volcanic eruption. Diatoms from Lake Prespa core Co1215 display the first strong evidence for the impact of Italian volcanic activity on lacustrine biota in this region. Results emphasize the complexity of diatom response thresholds in different studies across the region. In the case of Lake Prespa, the results highlight the important role of precipitation for maintaining the hydrological balance of the lake, and indirectly, its biodiversity.


Lake Prespa Diatoms Lake-level change Palaeoclimate Tephra impact Quaternary Heinrich events 



The authors thank the Alexander von Humboldt Foundation for financial support of the project “Reconstruction of past environmental variations in ancient Lake Ohrid, a diatom inferred perspective.” The project was partly funded by the German Research Foundation (DFG) within the scope of the Project B2 of the Collaborative Research Center 806 “Our Way to Europe.” We thank Paul B. Hamilton, Canadian Museum of Nature, Canada, for helpful discussions about palaeolimnology and Mrs. Danijela Mitić Kopanja, Institute of Biology, Faculty of Natural Sciences, Skopje, Macedonia for technical assistance. We also thank our colleagues in the Institute of Geology and Mineralogy and the Seminar of Geography and Education (University of Cologne) for help in the field and in the lab. We are grateful to Dr. Timothy Jones, Lancaster Environment Centre, Lancaster University, UK for providing diatom data from Lake Ioannina core I-08.


  1. Alley RB (2000) The younger dryas cold interval as viewed from central Greenland. Quat Sci Rev 19:213–226CrossRefGoogle Scholar
  2. Ampel L, Wohlfarth B, Risberg J, Veres D (2008) Paleolimnological response to millennial and centennial scale climate variability during MIS 3 and 2 as suggested by the diatom record in Les Echets, France. Quat Sci Rev 27:1493–1504CrossRefGoogle Scholar
  3. Ampel L, Bigler C, Wohlfarth B, Risberg J, Lotter AF, Veres D (2010) Modest summer temperature variability during DO cycles in western Europe. Quat Sci Rev 29:1322–1327CrossRefGoogle Scholar
  4. Aufgebauer A, Panagiotopoulos K, Wagner B, Schäbitz F, Viehberg FA, Vogel H, Zanchetta G, Sulpizio R, Leng MJ, Damaschke M (2012) Climate and environmental change in the Balkans over the last 17 ka recorded in sediments from Lake Prespa (Albania/F.Y.R. of Macedonia/Greece). Quat Int 274:122–135CrossRefGoogle Scholar
  5. Barberi F, Innocenti F, Lirer L, Munno R, Pescatore TS, Scandone R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull Volcanol 41:10–22CrossRefGoogle Scholar
  6. Barker P, Telford R, Merdaci O, Williamson D, Taieb M, Vincens A, Gibert E (2000) The sensitivity of a Tanzanian crater lake to catastrophic tephra input and four millennia of climate change. The Holocene 10:303–310CrossRefGoogle Scholar
  7. Battarbee RW (1986) Diatom analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570Google Scholar
  8. Bond G, Broecker W, Johnsen S, McManus J, Labeyrie L, Jouzel J, Bonani G (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147CrossRefGoogle Scholar
  9. Chapman MR, Shackleton NJ (1999) Global ice-volume fluctuations, North Atlantic ice-rafted events, and deep-ocean circulation changes between 130 and 70 ka. Geology 27:795–798CrossRefGoogle Scholar
  10. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714CrossRefGoogle Scholar
  11. Cruces F, Urrutia R, Parra O, Araneda A, Treutler H, Bertrand S, Fagel N, Torres L, Barra R, Chirinos L (2006) Changes in diatom assemblages in an Andean lake in response to a recent volcanic event. Arch Hydrobiol 165(1):23–35CrossRefGoogle Scholar
  12. Cvetkoska A, Reed JM, Levkov Z (2012) Diatoms as indicators of environmental change in ancient Lake Ohrid during the last glacial-interglacial cycle (ca 140 ka). In: Witkowski A (ed) Diatom monographs, vol 15. ARG Gartner Verlag, Ruggell, Liechtenstein, p 220Google Scholar
  13. Cvetkoska A, Hamilton PB, Ognjanova-Rumenova N, Levkov Z (2014a) Observations of the genus Cyclotella (Kützing) Brébisson in ancient lakes Ohrid and Prespa and a description of two new species C. paraocellata sp. nov. and C. prespanensis sp. nov. Nova Hedwigia 98(3–4):313–340CrossRefGoogle Scholar
  14. Cvetkoska A, Levkov Z, Reed JM, Wagner B (2014b) Late glacial to Holocene climate change and human impact in the Mediterranean: the last ca. 17 ka diatom record of Lake Prespa (Macedonia/Albania/Greece). Palaeogeogr Palaeoclimatol Palaeoecol 406:22–32CrossRefGoogle Scholar
  15. Damaschke M, Sulpizio R, Zanchetta G, Wagner B, Böhm A, Nowaczyk N, Rethemeyer J, Hilgers A (2013) Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Clim Past 9:267–287CrossRefGoogle Scholar
  16. Fitzsimmons KE, Hambach U, Veres D, Iovita R (2013) The Campanian Ignimbrite Eruption: new data on volcanic ash dispersal and its potential impact on human evolution. PLoS One 8(6):e65839CrossRefGoogle Scholar
  17. GICC05modelext (2010). Accessed 15 Jan 2014
  18. Grimm EC (1987) CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35CrossRefGoogle Scholar
  19. Grimm EC (1991) Tilia and Tilia-Graph. Illinois State Museum, SpringfieldGoogle Scholar
  20. Hollis GE, Stevenson AC (1997) The physical basis of the Lake Mikri Prespa systems: geology, climate, hydrology and water quality. Hydrobiologia 351:1–19CrossRefGoogle Scholar
  21. Holm NP, Armstrong DE (1981) Role of nutrient limitation and competition in controlling the populations of Asterionella formosa and Microcystis aeruginosa in semicontinuous culture. Limnol Oceanogr 24(4):622–634CrossRefGoogle Scholar
  22. Hustedt F (1945) Diatomeen aus Seen und Quellgebieten der Balkan-Halbinsel. Arch Hydrobiol 40:867–973Google Scholar
  23. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the Globe Version 4. Available from: the CGIAR-CSI SRTM 90 m Database. Retrieved 27.11.2011, from
  24. Jones TD, Lawson IT, Reed JM, Wilson GP, Leng MJ, Gierga M, Bernasconi SM, Smittenberg RH, Hajdas I, Bryant CL, Tzedakis PC (2013) Diatom-inferred late Pleistocene and Holocene palaeolimnological changes in the Ioannina basin, northwest Greece. J Paleolimnol 49:185–204CrossRefGoogle Scholar
  25. Jongman RHG, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, p 324CrossRefGoogle Scholar
  26. Juggins S (1991–2007) C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualization. Newcastle University, Newcastle upon Tyne, UK, p 73Google Scholar
  27. Kilham P, Kilham SS, Hecky RE (1986) Hypothesized resource relationships among African planktonic diatoms. Limnol Oceanogr 31:1169–1181CrossRefGoogle Scholar
  28. Krammer K, Lange-Bertalot H (1986–1991) SuЁbsswassswasserflora von Mitteleuropa. In: Ettl H, GaЁrtner 998 G, Gerloff J, Heynig H, Mollenhauer D (eds) . 2/1: p. 876; 2/2: p. 596; 2/3: 1000 p. 576; 2/4: p. 437; 2/5: Gustav Fischer Verlag, Stuttgart Google Scholar
  29. Krstić S (2012) Environmental changes in Lakes catchments as a trigger for rapid eutrophication—A Prespa Lake Case Study. In: Piacentini T (ed) Studies on environmental and applied geomorphology, pp 63–118.
  30. Lacey JH, Francke A, Leng MJ, Christopher VH, Wagner B (2014) A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania). Int J Earth Sci (Geol Rundsch). doi: 10.1007/s00531-014-1033-6 Google Scholar
  31. Leng MJ, Baneschi I, Zanchetta G, Jex CN, Wagner B, Vogel H (2010) Late Quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes. Biogeosciences 7:3109–3122CrossRefGoogle Scholar
  32. Leng MJ, Wagner B, Boehm A, Panagiotopoulos K, Vane CH, Snelling A, Haidon C, Woodley E, Vogel H, Zanchetta G, Baneschi I (2013) Understanding past climatic and hydrological variability in the Mediterranean from Lake Prespa sediment isotope and geochemical record over the Last Glacial cycle. Quat Sci Rev 66:123–136CrossRefGoogle Scholar
  33. Levin I, Kromer B (2004) The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46:1261–1272Google Scholar
  34. Levkov Z, Blanco S, Krstic S, Nakov T, Ector L (2007a) Ecology of benthic diatoms from Lake Macro Prespa (Macedonia). Algol Stud 124:71–83CrossRefGoogle Scholar
  35. Levkov Z, Krstic S, Metzeltin D, Nakov T (2007b) Diatoms of Lakes Prespa and Ohrid. About 500 taxa from ancient lake system. Iconographia Diatomologica 16. ARG Gartner Verlag, Ruggell, p 603Google Scholar
  36. Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:PA1003Google Scholar
  37. Magny M, Joannin S, Galop D, Vanniere B, Haas JN, Basseti M, Bellintani P, Scandolari R, Desmet M (2012) Holocene palaeohydrological changes in the Northern Mediterranean borderlands as reflected by the lake-level record of Lake Ledro, Northeastern Italy. Quat Res 77:382–396CrossRefGoogle Scholar
  38. Matzinger A, Spirkovski Z, Patceva S, Wüest A (2006) Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming. J Gt Lakes Res 32:158–179CrossRefGoogle Scholar
  39. North Greenland Ice Core Project members (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151CrossRefGoogle Scholar
  40. Panagiotopoulos K, Aufgebauer A, Schäbitz F, Wagner B (2013) Vegetation and climate history of the Lake Prespa region since the Lateglacial. Quat Int 293:157–169CrossRefGoogle Scholar
  41. Panagiotopoulos K, Böhm A, Leng MJ, Wagner B, Schäbitz F (2014) Climate variability over the last 92 ka in SW Balkans from analysis of sediments from Lake Prespa. Clim Past 10:643–660CrossRefGoogle Scholar
  42. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  43. Reed JM, Cvetkoska A, Levkov Z, Vogel H, Wagner B (2010) The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate. Biogeosciences 7:3083–3094CrossRefGoogle Scholar
  44. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  45. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004) Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. J Limnol 63(2):171–189CrossRefGoogle Scholar
  46. Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Int Ver Limnol 23:837–844Google Scholar
  47. Stanković S (1960) The Balkan Lake Ohrid and its living world. Monogr. Biol. IX. Uitgeverij Dr. W. Junk, Den Haag, NetherlandsGoogle Scholar
  48. Vogel H, Zanchetta G, Sulpizio R, Wagner B, Nowaczyk N (2010) A tephrostratigraphic record for the last glacial interglacial cycle from Lake Ohrid, Albania and Macedonia. J Quat Sci 25:320–338CrossRefGoogle Scholar
  49. Wagner B, Reicherter K, Daut G, Wessels M, Matzinger A, Schwalb A, Spirkovski Z, Sanxhaku M (2008a) The potential of Lake Ohrid for long-term palaeoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 259:341–356CrossRefGoogle Scholar
  50. Wagner B, Sulpizio R, Zanchetta G, Wulf S, Wessels M, Daut G (2008b) The last 40 ka tephrostratigraphic record of Lake Ohrid, Albania and Macedonia: a very distal archive for ash dispersal from Italian volcanoes. J Volcanol Geoth Res 177:71–80CrossRefGoogle Scholar
  51. Wagner B, Lotter AF, Nowaczyk N, Reed JM, Schwalb A, Sulpizio R, Valsecchi V, Wessels M, Zanchetta G (2009) A 40.000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). J Paleolimnol 41: 407–430Google Scholar
  52. Wagner B, Vogel H, Zanchetta G, Sulpizio R (2010) Environmental changes on the Balkans recorded in the sediments from lakes Prespa and Ohrid. Biogeosciences 7:3365–3392CrossRefGoogle Scholar
  53. Wagner B, Aufgebauer A, Vogel H, Zanchetta G, Sulpizio R, Damaschke M (2012) Late Pleistocene and Holocene contourite drift in Lake Prespa Albania/F.Y.R. of Macedonia/Greece. Quat Int 274:112–121CrossRefGoogle Scholar
  54. Wagner B, Leng MJ, Wilke T, Böhm A, Panagiotopoulos K, Vogel H, Lacey JH, Zanchetta G, Sulpizio R (2014a) Distinct lake level lowstand in Lake Prespa (SE Europe) at the time of the 74 (75) ka Toba eruption. Clim Past 10:261–267CrossRefGoogle Scholar
  55. Wagner B, Wilke T, Krastel S, Zanchetta G, Sulpizio K, Reicherter K, Leng M, Grazhdani A, Trajanovski S, Levkov Z, Reed J, Wonik T (2014b) More than one million years of history in Lake Ohrid cores. Eos Trans Am Geophys Union 95(3):25–26CrossRefGoogle Scholar
  56. Wagner B, Wilke T, Krastel S, Zanchetta G, Sulpizio R, Reicherter K, Leng MJ, Grazhdani A, Trajanovski S, Francke A, Lindhorst K, Levkov Z, Cvetkoska A, Reed JM, Zhang X, Lacey JH, Wonik T, Baumgarten H, Vogel H (2014c) The SCOPSCO drilling project recovers more than 1.2 million years history from Lake Ohrid. Sci Drill 17:19–29CrossRefGoogle Scholar
  57. Wilson GP, Reed JM, Lawson IT, Frogley MR, Preece RC, Tzedakis PC (2008) Diatom response to the last glacial interglacial transition in the Ioannina basin, northwest Greece: implications for Mediterranean palaeoclimate reconstruction. Quat Sci Rev 27:428–440CrossRefGoogle Scholar
  58. Wilson GP, Frogley MR, Roucoux KH, Jones TD, Leng MJ, Lawson IT, Hughes PD (2013) Limnetic and terrestrial responses to climate change during the onset of the penultimate glacial stage in NW Greece. Glob Planet Change 107:213–225CrossRefGoogle Scholar
  59. Wolff EW, Chappellaz J, Blunier T, Rasmussen SO, Svensson A (2010) Millennial-scale variability during the last glacial: the ice core record. Quat Sci Rev 29:2828–2838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Aleksandra Cvetkoska
    • 1
  • Zlatko Levkov
    • 1
  • Jane M. Reed
    • 2
  • Bernd Wagner
    • 3
  • Konstantinos Panagiotopoulos
    • 4
  • Melanie J. Leng
    • 5
    • 6
  • Jack H. Lacey
    • 7
    • 6
  1. 1.Faculty of Natural Sciences, Institute of BiologySs Cyril and Methodius UniversitySkopjeRepublic of Macedonia
  2. 2.Department of Geography, Environment and Earth SciencesUniversity of HullHullUK
  3. 3.Institute of Geology and MineralogyUniversity of CologneCologneGermany
  4. 4.Seminar of Geography and EducationUniversity of CologneCologneGermany
  5. 5.Centre for Environmental Geochemistry, School of GeographyUniversity of NottinghamNottinghamUK
  6. 6.NERC Isotope Geosciences FacilityBritish Geological SurveyNottinghamUK
  7. 7.Department of GeologyUniversity of LeicesterLeicesterUK

Personalised recommendations