Skip to main content

Advertisement

Log in

Oxygen isotope analysis of multiple, single ostracod valves as a proxy for combined variability in seasonal temperature and lake water oxygen isotopes

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Paleoclimate studies in lakes typically use oxygen isotopic ratios in samples that consist of multiple ostracod specimens, to obtain an average δ18O value that reflects the mean temperature and δ18O of lake water over the life spans of the combined individuals measured. This approach overlooks potential information on seasonal climate variability that is recorded in the single valves of short-lived ostracods. Here we estimate seasonal variability in ostracod δ18O by measuring 10–30 individual carapaces of Cyprideis torosa in selected stratigraphic levels of a sediment core from paleolake Riwasa in Haryana, India. The mean δ18O values of ostracod populations show a general decrease from 9.6 to 8.3 kyr BP, which was interpreted previously as resulting from strengthening of the Indian summer monsoon during the early Holocene. The δ18O measurements of single ostracods within samples show a large range (up to ~15 ‰) and standard deviation (up to ±3.3), suggesting high seasonal variability in the hydrology of this playa lake. The great variability is ascribed to changes in both seasonal temperature (16 °C) and δ18O of lake water in a drying water body. The latter is attributable to the Rayleigh distillation process, described using a Craig–Gordon model for isotopic fractionation during evaporation from an open water body. Our results suggest that the range of δ18O values measured in single ostracod carapaces is useful to evaluate seasonal changes in lake temperature and hydrology. Even with great intra-sample δ18O variability, however, the mean δ18O of multiple (more than 10) ostracods can be used to infer long-term climate trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anadón P, Deckker P, Julià R (1986) The Pleistocene lake deposits of the NE Baza Basin (Spain): salinity variations and ostracod succession. Hydrobiologia 143:199–208. doi:10.1007/BF00026662

    Article  Google Scholar 

  • Anand P, Kroon D, Singh A, Ganeshram R, Ganssen G, Elderfield H (2008) Coupled sea surface temperature–seawater δ 18 O reconstructions in the Arabian Sea at the millennial scale for the last 35 ka. Paleoceanography. doi:10.1029/2007PA001564

    Google Scholar 

  • Bhattacharya S, Gupta S, Krishnamurthy R (1985) Oxygen and hydrogen isotopic ratios in groundwaters and river waters from India. Proc Indian Acad Sci Earth Planet Sci 94:283–295

    Article  Google Scholar 

  • Cai Y, Zhang H, Cheng H, Zhisheng A, Edwards LR, Wang X, Tan L, Liang F, Wang J, Kelly M (2012) The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planet Sci Lett 335–336:135–144. doi:10.1016/j.epsl.2012.04.035

    Article  Google Scholar 

  • Chivas AR, Deckker P, Shelley JMG (1986) Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia 143:135–142. doi:10.1007/BF00026656

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen-18 variations in the ocean and marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleotemperatures. Lab. Geologia Nucleare, Pisa, pp 9–130

    Google Scholar 

  • Darling WG, Bath AH, Gibson JJ, Rozanski K (2006) Isotopes in water. In: Leng MJ (ed) Isotopes in palaeoenvironmental research. Springer, Dordrecht, pp 1–66

    Chapter  Google Scholar 

  • Decrouy L, Vennemann TW, Ariztegui D (2011) Controls on ostracod valve geochemistry: Part 2. Carbon and oxygen isotope compositions. Geochim Cosmochim Acta 75:7380–7399. doi:10.1016/j.gca.2011.09.008

    Article  Google Scholar 

  • DeDeckker P (1983) Notes on the ecology and distribution of non-marine ostracods in Australia. Hydrobiologia 106:223–234. doi:10.1007/BF00008120

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Petrie CA (2014a) Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology 42:339–342

    Article  Google Scholar 

  • Dixit Y, Hodell DA, Sinha R, Petrie CA (2014b) Abrupt weakening of the Indian summer monsoon at 8.2 kyr BP. Earth Planet Sci Lett 391:16–23. doi:10.1016/j.epsl.2014.01.026

    Article  Google Scholar 

  • Durazzi JT (1977) Stable isotopes in the ostracod shell: a preliminary study. Geochim Cosmochim Acta 41:1168–1170. doi:10.1016/0016-7037(77)90113-2

    Article  Google Scholar 

  • Engleman EE, Jackson LL, Norton DR (1985) Determination of carbonate carbon in geological materials by coulometric titration. Chem Geol 53:125–128. doi:10.1016/0009-2541(85)90025-7

    Article  Google Scholar 

  • Escobar J, Curtis J, Brenner M, Hodell DA, Holmes JA (2010) Isotope measurements of single ostracod valves and gastropod shells for climate reconstruction: evaluation of within-sample variability and determination of optimum sample size. J Paleolimnol 43:921–938. doi:10.1007/s10933-009-9377-9

    Article  Google Scholar 

  • Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300:1737–1739. doi:10.1126/science.1083130

    Article  Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry: vol 2, the terrestrial environment. Elsevier, Amsterdam, pp 113–168

    Google Scholar 

  • Haslett J (2001) P. Cebon, U. Dahinden, H. C. Davies, D. Imboden, C. C. Jaeger (eds.), Views from the Alps: regional perspectives on climate change. Clim Chang 51:243–247. doi:10.1023/A:1012284328353

  • Heaton THE, Holmes JA, Bridgwater ND (1995) Carbon and oxygen isotope variations among lacustrine ostracods: implications for palaeoclimatic studies. Holocene 5:428–434

    Article  Google Scholar 

  • Heip C (1976) The life-cycle of Cyprideis torosa (Crustacea, Ostracoda). Oecologia 24:229–245. doi:10.1007/BF00345475

    Article  Google Scholar 

  • Herman PMJ, Heip C, Vranken G (1983) The production of Cyprideis torosa Jones 1850 (Crustacea, Ostracoda). Oecologia 58:326–331. doi:10.2307/4217039

    Article  Google Scholar 

  • Hodell DA, Brenner M, Kanfoush SL, Curtis JH, Stoner JS, Song X, Yuan W, Whitmore TJ (1999) Paleoclimate of southwestern China for the past 50,000 yr inferred from lake sediment records. Quat Res 52:369–380. doi:10.1006/qres.1999.2072

    Article  Google Scholar 

  • Holmes JA (2008) Sample-size implications of the trace-element variability of ostracod shells. Geochim Cosmochim Acta 72:2934–2945. doi:10.1016/j.gca.2008.03.020

    Article  Google Scholar 

  • Horne DJ, Cohen A, Martens K (2002) Taxonomy, morphology and biology of quaternary and living Ostracoda. In: Holmes JA, Chivas A (eds) The Ostracoda: applications in quaternary research, AGU geophysical monograph series 131. Washington, pp 5–36

  • Indian Meteorological Department (1901–2000) Climatological tables of observatories in India: New Delhi. http://www.imd.gov.in/doc/climateimp.pdf

  • Jones MD, Leng MJ, Eastwood WJ, Keen DH, Turney CSM (2002) Interpreting stable-isotope records from freshwater snail-shell carbonate: a Holocene case study from Lake Gölhisar, Turkey. Holocene 12:629–634

    Article  Google Scholar 

  • Majoube M (1971) Fractionnement en oxygene-18 et en deuterium entre l’eau et sa vapeur. J Chim Phys 68:1423–1436

    Google Scholar 

  • Marco-Barba J, Ito E, Carbonell E, Mesquita-Joanes F (2012) Empirical calibration of shell chemistry of Cyprideis torosa (Jones, 1850) (Crustacea: Ostracoda). Geochim Cosmochim Acta 93:143–163. doi:10.1016/j.gca.2012.06.019

    Article  Google Scholar 

  • Mezquita F, Roca JR, Reed JM, Wansard G (2005) Quantifying species–environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeogr Palaeocl 225:93–117. doi:10.1016/j.palaeo.2004.02.052

  • Overpeck J, Anderson D, Trumbore S, Prell W (1996) The southwest Indian Monsoon over the last 18 000 years. Clim Dyn 12:213–225. doi:10.1007/BF00211619

    Article  Google Scholar 

  • Pang H, He Y, Zhang Z, Lu A, Gu J (2004) The origin of summer monsoon rainfall at New Delhi by deuterium excess. Hydrol Earth Syst Sci Discuss 8:115–118

    Article  Google Scholar 

  • Pérez L, Curtis J, Brenner M, Hodell DA, Escobar J, Lozano S, Schwalb A (2013) Stable isotope values (δ18O and δ13C) of multiple ostracode species in a large Neotropical lake as indicators of past changes in hydrology. Quat Sci Rev 66:96–111

    Article  Google Scholar 

  • Saini HS, Tandon SK, Mujtaba SAI, Pant NC (2005) Lake deposits of the northeastern margin of Thar Desert: Holocene(?) palaeoclimatic implications. Curr Sci 88:1994–2000

    Google Scholar 

  • Schulz H, von Rad U, Erlenkeuser H, von Rad U (1998) Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393:54–57. doi:10.1038/31750

    Google Scholar 

  • Schwalb A, J. Burns S, Cusminsky G Kelts K, Markgraf V (2002) Assemblage diversity and isotopic signals of modern ostracodes and host waters from Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 187:323–339. doi: 10.1016/S0031-0182(02)00484-4

  • Shackleton N (1974) Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Cent Nat Rech Sci Colloq Int 219:203–209

    Google Scholar 

  • Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA, Li X (2005) The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science 308:854–857. doi:10.1126/science.1106296

    Article  Google Scholar 

  • Xia J, Engstrom DR, Ito E (1997) Geochemistry of ostracode calcite: Part 2. The effects of water chemistry and seasonal temperature variation on Candona rawsoni. Geochim Cosmochim Acta 61:383–391. doi:10.1016/S0016-7037(96)00354-7

    Article  Google Scholar 

  • Yadav DN (1997) Oxygen isotope study of evaporating brines in Sambhar Lake, Rajasthan (India). Chem Geol 138:109–118. doi:10.1016/S0009-2541(96)00154-4

    Article  Google Scholar 

  • Zhang J, Chen F, Holmes JA, Li H, Guao X, Wang J, Li S, Lu Y, Zhao Y, Qiang M (2011) Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quat Sci Rev 30:1973–1987. doi:10.1016/j.quascirev.2011.04.023

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Environment Research Council (NE/H011463/1). Yama Dixit was funded by the Gates Cambridge Trust and Learning and Research Funds from St. John’s College, Cambridge. We thank Mike Hall, James Rolfe and Jeannie Booth for analytical assistance. Many thanks to Prof. R. N. Singh, (BHU), Vikas Pawar and Sandeep Mallik for logistical field support. Ajit Singh helped with sediment core sampling. Thanks also to Thomas Guilderson for AMS radiocarbon dating at the Center for Accelerator Mass Spectrometry (CAMS), Lawrence Livermore National Laboratory (California, USA) and Ayan Bhowmik for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yama Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, Y., Hodell, D.A., Sinha, R. et al. Oxygen isotope analysis of multiple, single ostracod valves as a proxy for combined variability in seasonal temperature and lake water oxygen isotopes. J Paleolimnol 53, 35–45 (2015). https://doi.org/10.1007/s10933-014-9805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-014-9805-3

Keywords

Navigation