Journal of Paleolimnology

, Volume 52, Issue 4, pp 367–383 | Cite as

Relatedness between contemporary and subfossil cladoceran assemblages in Turkish lakes

  • A. İdil ÇakıroğluEmail author
  • Ü. Nihan Tavşanoğlu
  • Eti E. Levi
  • Thomas A. Davidson
  • Tuba Bucak
  • Arda Özen
  • Gürçay K. Akyıldız
  • Erik Jeppesen
  • Meryem Beklioğlu
Original paper


Cladocerans are valuable indicators of environmental change in lakes. Their fossils provide information on past changes in lake environments. However, few studies have quantitatively examined the relationships between contemporary and sub-fossil cladoceran assemblages and no investigations are available from Mediterranean lakes where salinity, eutrophication and top-down control of large-bodied cladocerans are known to be important. Here we compared contemporary Cladocera assemblages, sampled in summer, from both littoral and pelagic zones, with their sub-fossil remains from surface sediment samples from 40 Turkish, mainly shallow, lakes. A total of 20 and 27 taxa were recorded in the contemporary and surface sediment samples, respectively. Procrustes rotation was applied to both the principal components analysis (PCA) and redundancy analysis (RDA) ordinations in order to explore the relationship between the cladoceran community and the environmental variables. Procrustes rotation analysis based on PCA showed a significant accord between both littoral and combined pelagic–littoral contemporary and sedimentary assemblages. RDA ordinations indicated that a similar proportion of variance was explained by environmental variation for the contemporary and fossil Cladocera data. Total phosphorus and salinity were significant explanatory variables for the contemporary assemblage, whereas salinity emerged as the only significant variable for the sedimentary assemblage. The residuals from the Procrustes rotation identified a number of lakes with a high degree of dissimilarity between modern and sub-fossil assemblages. Analysis showed that high salinity, deep water and high macrophyte abundance were linked to a lower accord between contemporary and sedimentary assemblages. This low accord was, generally the result of poor representation of some salinity tolerant, pelagic and macrophyte-associated taxa in the contemporary samples. This study provides further confirmation that there is a robust relationship between samples of modern cladoceran assemblages and their sedimentary remains. Thus, sub-fossil cladoceran assemblages from sediment cores can be used with confidence to track long-term changes in this environmentally sensitive group and in Mediterranean lakes, subjected to large inter-annual variation in water level, salinity and nutrients.


Mediterranean lakes Procrustes rotation Diversity Richness Salinity Total phosphorus 



We are grateful to S. L. Amsinck, L. S. Johansson and K. Jensen for help with the identification of cladoceran remains. This study was supported by Middle East Technical University (METU)-BAP programme of Turkey (BAP.07.02.2009-2012), TÜBİTAK-ÇAYDAG (Projects Nos: 105Y332 and 110Y125) and FP-7 REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No.: 244121) and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 ( AİÇ, ÜNT and EET were also supported by TÜBİTAK (Project Nos.: 105Y332 and 110Y125), TB was supported by TÜBİTAK 2211 Scholarship Programme, AÖ was supported by METU-ÖYP Programme, and TAD’s contribution was supported by CIRCE, funded by the AUFF–AU Ideas program. AİÇ is also thankful to the EU-Erasmus Student Exchange Programme for the fellowship during her stay in Denmark. The authors are grateful to A. M. Poulsen for editing the manuscript. We also want to thank Lisa Doner, Korhan Özkan, Damla Beton, Şeyda Erdoğan, Gizem Bezirci, Nur Filiz, Burcu Yeşilbudak, Seval Özcan, Ceran Şekeryapan, Mengü Türk, Semra Yalçın and Mukadder Arslan for their invaluable support for this work both in the field and in the laboratory.


  1. Aladin NV (1991) Salinity tolerance and morphology of the osmoregulation organs in Cladocera with special reference to Cladocera from the Aral Sea. Hydrobiologia 225:291–299CrossRefGoogle Scholar
  2. Amsinck SL, Jeppesen E, Landkildehus F (2005) Relationships between environmental variables and zooplankton subfossils in the surface sediments of 36 shallow coastal brackish lakes with special emphasis on the role of fish. J Paleolimnol 33:39–51CrossRefGoogle Scholar
  3. Amsinck SL, Strzelczak A, Bjerring R, Landkildehus F, Lauridsen TL, Søndergaard M, Jeppesen E (2006) Lake depth rather than fish planktivory determine cladoceran community structure in Faroese lakes—evidence from contemporary data and sediments. Freshw Biol 51:2124–2142CrossRefGoogle Scholar
  4. Anderson NJ, Battarbee RW (1994) Aquatic community persistence and variability: a palaeolimnological perspective. In: Giller PS, Hildrew AG, Raffelli D (eds) Aquatic ecology: scale. Press, Oxford, Pattern and Process. Blackwell Sci, pp 233–259Google Scholar
  5. Beklioglu M, Meerhoff M, Søndergaard M, Jeppesen E (2011) Eutrophication and restoration of shallow lakes from cold temperate to a warm Mediterranean and a (sub) tropical climate. In: Ansari AA, Singh Gill S, Lanza GR, Rast W (eds) Eutrophication: causes, consequences and control, vol 1. Springer, New York, pp 91–108Google Scholar
  6. Bezirci G, Akkas SB, Rinke K, Yildirim F, Kalaylioglu Z, Severcan F, Beklioglu M (2012) Impacts of salinity and fish-exuded kairomone on the survival and macromolecular profile of Daphnia pulex. Ecotoxicology 21:601–614CrossRefGoogle Scholar
  7. Bjerring R, Becares E, Declerck S, Gross EM, Hansson LA, Kairesalo T, Nykanen M, Halkiewic A, Kornijow R, Conde-Porcuna JM, Seferlis M, Noges T, Moss B, Amsinck SL, Odgaard BV, Jeppesen E (2009) Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshw Biol 54:2401–2417CrossRefGoogle Scholar
  8. Boersma M, van Tongeren OFR, Mooij WM (1996) Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can J Fish Aquat Sci 53:18–28CrossRefGoogle Scholar
  9. Boix D, Gascon S, Sala J, Badosa A, Brucet S, Lopez-Flores R, Martinoy M, Gifre J, Quintana XD (2008) Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia 597:53–69CrossRefGoogle Scholar
  10. Boronat L, Miracle MR, Armengol X (2001) Cladoceran assemblages in a mineralization gradient. Hydrobiologia 442:75–88CrossRefGoogle Scholar
  11. Bos DG, Cumming BF, Smol JP (1999) Cladocera and Anostraca from the Interior Plateau of British Columbia, Canada, as paleolimnological indicators of salinity and lake level. Hydrobiologia 392:129–141CrossRefGoogle Scholar
  12. Brucet S, Boix D, Gascón S, Sala J, Quintana XD, Badosa A, Søndergaard M, Lauridsen TL, Jeppesen E (2009) Species richness of crustacean zooplankton and trophic structure of brackish lagoons in contrasting climate zones: north temperate Denmark and Mediterranean Catalonia (Spain). Ecography 32:692–702CrossRefGoogle Scholar
  13. Bucak T, Saraoğlu E, Levi EE, Tavşanoğlu UN, Çakıroğlu Aİ, Jeppesen E, Beklioğlu M (2012) The influence of water level on macrophyte growth and trophic interactions in eutrophic Mediterranean shallow lakes: a mesocosm experiment with and without fish. Freshw Biol 57(8):1631–1642CrossRefGoogle Scholar
  14. Canfield DE, Shireman JV, Colle DE, Haller WT, Watkins CE, Maceina MJ (1984) Prediction of chlorophyll-a concentrations in Florida lakes: importance of aquatic macrophytes. Can J Fish Aquat Sci 41:497–501CrossRefGoogle Scholar
  15. Caroni R, Irvine K (2010) The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biol Environ Proc R Ir Acad 110B:35–53CrossRefGoogle Scholar
  16. Chen G, Dalton C, Taylor D (2010) Cladocera as indicators of trophic state in Irish lakes. J Paleolimnol 44:465–481CrossRefGoogle Scholar
  17. Davidson TA, Sayer CD, Perrow MR, Bramm M, Jeppesen E (2007) Are the controls of species composition similar for contemporary and fossil cladoceran assemblages? A study of 39 shallow lakes of contrasting trophic status. J Paleolimnol 38:117–134CrossRefGoogle Scholar
  18. Davidson TA, Bennion H, Sayer C, Jeppesen E, Clarke GH, Morley D, Odgaard BV, Rasmussen P, Rawcliffe R, Salgado J, Amsinck SL (2011a) The role of cladocerans in tracking long-term in shallow lake trophic status. Hydrobiologia 676:129–142CrossRefGoogle Scholar
  19. Davidson TA, Amsinck SL, Bennike O, Landkildehus F, Lauridsen TL, Jeppesen E (2011b) Inferring a single variable from an assemblage with multiple controls: getting into deep water with cladoceran lake-depth transfer functions. Hydrobiologia 676:129–142CrossRefGoogle Scholar
  20. Davidson TA, Reid MA, Sayer CD, Chilcott S (2013) Palaeolimnological records of shallow lake biodiversity change: exploring the merits of single versus multi-proxy approaches. J Paleolimnol 49:431–446CrossRefGoogle Scholar
  21. Declerck S, Vandekerkhove J, Johansson L, Muylaert K, Conde-Porcuna JM, Van der Gucht K, Perez-Martinez C, Lauridsen T, Schwenk K, Zwart G, Rommens W, Lopez-Ramos J, Jeppesen E, Vyverman W, Brendonck L, De Meester L (2005) Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86:1905–1915CrossRefGoogle Scholar
  22. Dodson SI, Frey DG (2001) Cladocera and other Branchiopoda. In: Ecology and classification of North American freshwater invertebrates, p 849–913Google Scholar
  23. Einsle U (1993) Crustacea Copepoda, Calanoida und Cyclopoida. Gustav Fisher Verlag, Stuttgart, p 208Google Scholar
  24. Flöβner D (2000) Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, LeidenGoogle Scholar
  25. Frey DG (1959) The taxonomic and phylogenetic significance of the head pores of the Chydoridae (Cladocera). Int Rev Ges Hydrobiol 44:27–50CrossRefGoogle Scholar
  26. Frey DG (1960) On the occurrence of cladoceran remains in lake sediments. Proc Natl Acad Sci USA 46(6):917–920CrossRefGoogle Scholar
  27. Frey DG (1964) Remains of animals in Quaternary lake and bog sediments and their interpretation. Ergeb der Limnol 2:1–114Google Scholar
  28. Frey DG (1986) Cladocera analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. John Wiley & Sons Ltd, Hoboken, pp 667–692Google Scholar
  29. Frey DG (1988) What is paleolimnology? J Paleolimnol 1:5–8Google Scholar
  30. Frey DG (1993) The penetration of Cladocera into saline waters. Hydrobiologia 267:233–248CrossRefGoogle Scholar
  31. Gliwicz ZM (2003) Between hazards of starvation and risk of predation: the ecology of offshore animals. In: Kinne O (ed) Excellence of ecology, Book 12. International Ecology Institute, Oldendorf/LuheGoogle Scholar
  32. Gower JC (1971) Statistical methods of comparing different multivariate analyses of the same data. In: Hodson FR, Kendall DG, Tautu P (eds) Mathematics in the archaeological and historical sciences. Edinburgh University Press, Edinburgh, pp 138–149Google Scholar
  33. Green AJ, Fuentes C, Moreno-Ostos E, Rodrigues da Silva SL (2005) Factors influencing cladoceran abundance and species richness in brackish lakes in Eastern Spain. Ann Limnol Int J Limnol 41(2):73–81CrossRefGoogle Scholar
  34. Gyllström M, Hansson LA, Jeppesen E, Garcia-Criado F, Gross E, Irvine K, Kairesalo T, Kornijow R, Miracle MR, Nykänen M, Noges T, Romo S, Stephen D, Van Donk E, Moss B (2005) Zooplankton community structure in shallow lakes: interaction between climate and productivity. Limnol Oceanogr 50:2008–2021CrossRefGoogle Scholar
  35. Haberman J, Laugaste R (2003) On characteristics reflecting the trophic state of large and shallow Estonian lakes (L. Peipsi, L. Vortsjarv). Hydrobiologia 506:737–744CrossRefGoogle Scholar
  36. Hann BJ (1989) Methods in quaternary ecology #6 Cladocera. Geosci Can 16:17–26Google Scholar
  37. Hobaek A, Manca M, Andersen T (2002) Factors influencing species richness in lacustrine zooplankton. Acta Oecol 23:155–163Google Scholar
  38. Hofmann W (1987) Cladocera in space and time: analysis of lake sediments. Hydrobiologia 145:315–321CrossRefGoogle Scholar
  39. Hülsmann S, Mehner T (1997) Predation by under yearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshw Biol 38:209–219CrossRefGoogle Scholar
  40. Jackson DA (1995) PROTEST: a Procrustean randomization test of community environment concordance. Ecoscience 2:297–303Google Scholar
  41. Jensen E, Brucet S, Meerhoff M, Nathansen L, Jeppesen E (2010) Community structure and diel migration of zooplankton in shallow brackish lakes: role of salinity and predators. Hydrobiologia 646:215–229CrossRefGoogle Scholar
  42. Jeppesen E, Sondergaard M, Kanstrup E, Petersen B, Eriksen RB, Hammershoj M, Mortensen E, Jensen JP, Have A (1994) Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275(276):15–30CrossRefGoogle Scholar
  43. Jeppesen E, Madsen EA, Jensen JP, Anderson NJ (1996) Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lake. Freshw Biol 36:115–127CrossRefGoogle Scholar
  44. Jeppesen E, Lauridsen TL, Mitchell SF, Christoffersen K, Burns CW (2000) Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J Plankton Res 22:951–968CrossRefGoogle Scholar
  45. Jeppesen E, Leavitt P, De Meester L, Jensen JP (2001) Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. TREE 16(4):191–198Google Scholar
  46. Jeppesen E, Jensen JP, Lauridsen TL, Amsinck SL, Christoffersen K, Søndergaard M, Mitchell SF (2003) Sub-fossils of cladocerans in the surface sediment of 135 lakes as proxies for community structure of zooplankton, fish abundance and lake temperature. Hydrobiologia 491:321–330CrossRefGoogle Scholar
  47. Jeppesen E, Noges P, Davidson TA, Haberman J, Noges T, Blank K, Lauridsen TL, Søndergaard M, Sayer C, Laugaste R, Johansson LS, Bjering R, Amsink SL (2011a) Zooplankton as indicators in lakes: a scientific-based pleafor including zooplankton in the ecological qualityassessment of lakes according to the European WaterFramework Directive (WFD). Hydrobiologia 676:279–297CrossRefGoogle Scholar
  48. Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M, Hoffman CC, Andersen HE, Lauridsen TL, Liboriussen L, Larsen SE, Beklioğlu M, Meerhoff M, Özen A, Özkan K (2011b) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663(1):1–21CrossRefGoogle Scholar
  49. Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as axtraction solvent. Arch Hydrobiol 109:445–454Google Scholar
  50. Justel A, Peña D, Zamar R (1997) A multivariate Kolmogorov–Smirnov test of goodness of fit. Stat Probab Lett 35(3):251–259CrossRefGoogle Scholar
  51. Kattel G, Battarbee R, Mackay A, Birks HJB (2007) Are cladoceran fossils in lake sediment samples a biased reflection of the communities from which they are derived? J Paleolimnol 38:157–181CrossRefGoogle Scholar
  52. Kerfoot WC (1995) Bosmina remains in Lake Washington sediments: qualitative heterogeneity of bay environments and qualitative correspondence to production. Limnol Oceanogr 40:211–225CrossRefGoogle Scholar
  53. Leavitt PR, Sanford PR, Carpenter SR, Kitchell JF (1994) An annual fossil record of production, planktivory and piscivory during whole-lake manipulations. J Paleolimnol 11:133–149CrossRefGoogle Scholar
  54. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  55. Levi EE, Çakıroğlu Aİ, Bucak T, Odgaard BV, Davidson TA, Jeppesen E, Beklioğlu M (2014) Similarity between contemporary vegetation and plant remains in the sediment surface in Mediterranean lakes. Freshw Biol. doi: 10.1111/fwb.12299 Google Scholar
  56. Mackereth FJH, Heron J, Talling JF (1978) Water analysis: some revised methods for limnologists. Freshwater Biological Association, Ambleside, p 36Google Scholar
  57. Moss B, Stephen D, Alvarez C, Becares E, van de Bund W, Collings SE, van Donk E, de Eyto E, Feldmann T, Fernández-Aláez C, Fernández-Aláez M, Franken RJM, García-Criado F, Gross EM, Gyllström M, Hansson LA, Irvine K, Järvalt A, Jensen JP, Jeppesen E, Kairesalo T, Kornijów R, Krause T, Künnap H, Laas A, Lill E, Lorens B, Luup H, Miracle MR, Nõges P, Nõges T, Nykänen M, Ott I, Peczula W, Peeters ETHM, Phillips G, Romo S, Russell V, Salujõe J, Scheffer M, Siewertsen K, Smal H, Tesch C, Timm H, Tuvikene L, Tonno I, Virro T, Vicente E, Wilson D (2003) The determination of ecological status in shallow lakes—a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquat Conserv Mar Freshw Ecosyst 13:507–549CrossRefGoogle Scholar
  58. Müeller WP (1964) The distribution of cladoceran remains in surficial sediments from three Northern Indiana Lakes. Invest Indiana Lakes Streams 6:1–63Google Scholar
  59. Nevalainen L (2010) Evaluation of microcrustacean (Cladocera, Chydoridae) biodiversity based on sweep net and surface sediment samples. Ecoscience 17:356–364CrossRefGoogle Scholar
  60. Nevalainen L (2011) Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676:9–22CrossRefGoogle Scholar
  61. Nevalainen L, Luoto TP (2012) Intralake training set of fossil Cladocera for paleohydrological inferences: evidence for multicentennial drought during the Medieval Climate Anomaly. Ecohydrology 5:834–840CrossRefGoogle Scholar
  62. Nykänen M, Vakkilainen K, Liukkonen M, Kairesalo T (2009) Cladoceran remains in lake sediments: a comparison between plankton counts and sediment records. J Paleolimnol 4:551–570CrossRefGoogle Scholar
  63. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2008) Vegan: community ecology package. R-Package version 1.15-1Google Scholar
  64. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473CrossRefGoogle Scholar
  65. Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129:169–178CrossRefGoogle Scholar
  66. Pontin RM (1978) A key to British freshwater planktonic Rotifera. Freshwater Biological Association, Ambleside, pp 5–15Google Scholar
  67. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  68. Rautio M, Sorvari S, Korhola A (2000) Diatom and crustacean zooplankton communities, their seasonal variability and their representation in the sediment of subarctic Lake Saanajarvi. J Limnol 59(Suppl. 1):81–96Google Scholar
  69. Romo S, Villena MJ, Sahuquillo M, Soria JM, Gimenez M, Alfonso T, Vicente E, Miracle MR (2005) Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshw Biol 50:1706–1717CrossRefGoogle Scholar
  70. Ruttner-Kolisko A (1977) Suggestions for biomass calculations of plankton rotifers. Arch Hydrobiol Beih Ergebn Limnol 8:71–76Google Scholar
  71. Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Chang 44:163–180CrossRefGoogle Scholar
  72. Schuytema GS, Nebeker AV, Stutzman TW (1997) Salinity tolerance of Daphnia magna and potential use for estuarine sediment toxicity tests. Arch Environ Contam Toxicol 33:194–198CrossRefGoogle Scholar
  73. Scourfield DJ, Harding JP (1966) A key to the British freshwater Cladocera with notes on their ecology, 3rd edn. Freshwater Biological Association, Ambleside, p 5Google Scholar
  74. Segers H (1995) Rotifera. Vol. 2, The Lecanidae (Monogononta). In: Dumont HJF, Nogrady T (eds) Guides to the identification of the microinvertebrates of the continental waters of the World 6. SPB Academic Publishing, The Hague, pp 142–167Google Scholar
  75. Smirnov NN (1996a) Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world, guides to the identification of the microinvertebrates of the continental waters of the world. SPB Academic Publishing, Netherlands, pp 1–197Google Scholar
  76. Smirnov NN (1996b) Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. Guides to the identification of the microinvertebrates of the continental waters of the world. SPB Academic Publishing, Netherlands, pp 1–197Google Scholar
  77. Smol JP (2008) Pollution of lakes and rivers—a paleoenvironmental perspective, 2nd edn. Blackwell Publishing, Oxford, p 383Google Scholar
  78. Szeroczyńska K, Sarmaja-Korjonen K (2007) Atlas of Subfossil Cladocera from Centraland Northern Europe. wyd. Towarzystwo Przyjaciół Dolnej Wisły, Świecie, p 1–84Google Scholar
  79. Tavşanoğlu UN (2012) Zooplankton adaptation strategies against fish predation in Turkish shallow lakes. PhD ThesisGoogle Scholar
  80. Tavşanoğlu UN, Çakıroğlu Aİ, Erdoğan Ş, Meerhoff M, Jeppesen E, Beklioğlu M (2012) Sediment—not plants—is the preferred refuge for Daphnia against fish predation in Mediterranean shallow lakes: an experimental approach. Freshw Biol 57:795–802CrossRefGoogle Scholar
  81. ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–173CrossRefGoogle Scholar
  82. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317CrossRefGoogle Scholar
  83. Ustaoğlu MR, Mis DÖ, Aygen C (2012) Observations on zooplankton in some lagoons in Turkey. J Black Sea/Mediterr Environ 18(2):208–222Google Scholar
  84. Vandekerkhove J, Declerck SAJ, Jeppesen E, Conde-Porcuna J, Brendonck L, De Meester L (2005) Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142:109–116CrossRefGoogle Scholar
  85. Vijverberg J (1980) Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshw Biol 10:317–340CrossRefGoogle Scholar
  86. Williams WD (1987) Salinization of rivers and streams: an important environmental hazard. Ambio 16:180–185Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. İdil Çakıroğlu
    • 1
    Email author
  • Ü. Nihan Tavşanoğlu
    • 1
  • Eti E. Levi
    • 1
  • Thomas A. Davidson
    • 2
    • 3
  • Tuba Bucak
    • 1
  • Arda Özen
    • 1
    • 4
  • Gürçay K. Akyıldız
    • 5
  • Erik Jeppesen
    • 2
    • 6
    • 7
  • Meryem Beklioğlu
    • 1
    • 8
  1. 1.Limnology Laboratory, Department of BiologyMiddle East Technical UniversityÇankaya, AnkaraTurkey
  2. 2.Department of Bioscience and the Arctic Centre (ARC)Aarhus UniversitySilkeborgDenmark
  3. 3.Ecoinformatics and Biodiversity Group, Department of BioscienceAarhus UniversityAarhusDenmark
  4. 4.Department of Forest EngineeringÇankırı Karatekin UniversityÇankırıTurkey
  5. 5.Department of Biology, Faculty of Science and LiteraturePamukkale UniverstiyKınıklı, DenizliTurkey
  6. 6.Greenland Climate Research Centre (GCRC)Greenland Institute of Natural ResourcesNuukGreenland
  7. 7.Sino-Danish Centre for Education and Research (SDC)BeijingChina
  8. 8.Kemal Kurdaş Ecological Research and Training Stations, Lake EymirMiddle East Technical UniversityÇankaya, AnkaraTurkey

Personalised recommendations