Journal of Paleolimnology

, Volume 50, Issue 3, pp 257–273 | Cite as

Chironomid assemblages in cores from multiple water depths reflect oxygen-driven changes in a deep French lake over the last 150 years

  • Victor Frossard
  • Laurent Millet
  • Valérie Verneaux
  • Jean-Philippe Jenny
  • Fabien Arnaud
  • Michel Magny
  • Jérôme Poulenard
  • Marie-Elodie Perga
Original paper

Abstract

We sampled modern chironomids at multiple water depths in Lake Annecy, France, before reconstructing changes in chironomid assemblages at sub-decadal resolution in sediment cores spanning the last 150 years. The lake is a large, deep (zmax = 65 m), subalpine waterbody that has recently returned to an oligotrophic state. Comparison between the water-depth distributions of living chironomid larvae and subfossil head capsules (HC) along three surface-sediment transects indicated spatial differences in the influence of external forcings on HC deposition (e.g. tributary effects). The transect with the lowest littoral influence and the best-preserved, depth-specific chironomid community characteristics was used for paleolimnological reconstructions at various water depths. At the beginning of the twentieth century, oxygen-rich conditions prevailed in the lake, as inferred from M. contracta-type and Procladius sp. at deep-water sites (i.e. cores from 56 to 65 m) and Paracladius sp. and H. grimshawi-type in the core from 30 m depth. Over time, chironomid assemblages in cores from all three water depths converged toward the dominance of S. coracina-type, indicating enhanced hypoxia. The initial change in chironomid assemblages from the deep-water cores occurred in the 1930s, at the same time that an increase in lake trophic state is inferred from an increase in total organic carbon (TOC) concentration in the sediment. In the 1950s, an assemblage change in the core from 30 m water depth reflects the rapid expansion of the hypoxic layer into the shallower region of the lake. Lake Annecy recovered its oligotrophic state in the 1990s. Chironomid assemblages, however, still indicate hypoxic conditions, suggesting that modern chironomid assemblages in Lake Annecy are decoupled from the lake trophic state. Recent increases in both TOC and the hydrogen index indicate that changes in pelagic functioning have had a strong indirect influence on the composition of the chironomid assemblage. Finally, the dramatic decrease in HC accumulation rate over time suggests that hypoxic conditions are maintained through a feedback loop, wherein the accumulation of (un-consumed) organic matter and subsequent bacterial respiration prevent chironomid re-colonization. We recommend study of sediment cores from multiple water depths, as opposed to investigation of only a single core from the deepest part of the lake, to assess the details of past ecological changes in large deep lakes.

Keywords

Paleoenvironmental reconstructions Re-oligotrophication Pelagic-benthic links Hypoxia 

References

  1. Balvay G (1978) Le régime thermique du lac d’Annecy (1966–1977). Revue de Géographie Alpine 66:241–261CrossRefGoogle Scholar
  2. Battarbee R, Morley D, Bennion H, Simpson G, Hughes M, Bauere V (2011) A palaeolimnological meta-database for assessing the ecological status of lakes. J Paleolimnol 45:405–414CrossRefGoogle Scholar
  3. Beisner B, Dent L, Carpenter S (2003) Variability of lakes on the landscape: roles of phosphorus, food webs, and dissolved organic carbon. Ecology 84:1563–1575CrossRefGoogle Scholar
  4. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  5. Brodersen K, Lindegaard C (1997) Significance of subfossile chironomid remains in classification of shallow lakes. Hydrobiologia 342–343:125–132CrossRefGoogle Scholar
  6. Brodersen K, Quinlan R (2006) Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Q Sci Rev 25:1995–2012CrossRefGoogle Scholar
  7. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10 Quaternary Research Association, London, p 276Google Scholar
  8. Cao Y, Zhang E, Chen X, Anderson J, Shen J (2012) Spatial distribution of subfossil Chironomidae in surface sediments of a large, shallow and hypertrophic lake (Taihu, SE China). Hydrobiologia 691:59–70CrossRefGoogle Scholar
  9. Cazala C, Reyss JL, Decossas JL, Royer A (2003) Improvement in the determination of 238U, 228–234Th, 226–228Ra, 210Pb and 7Be by Gamma Spectrometry on evaporated fresh water samples. Environ Sci Technol 37:4990–4993CrossRefGoogle Scholar
  10. Damuth JE, Balsam WL (2003) Data report: spectral data from sites 1165 and 1167 including the HiRISC section from Hole 1165B. In: Cooper AK, O’Brien PE, Richter C (eds) Proceedings of ODP science results, p 188, College Station, TX (Ocean Drilling Program) 1–49Google Scholar
  11. Diaz R, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929CrossRefGoogle Scholar
  12. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20Google Scholar
  13. Eggermont H, Heiri O (2011) The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol Rev Camb Philos Soc 87:430–456Google Scholar
  14. Eggermont H, Kennedy D, Hasiotis S, Verschuren D (2008) Distribution of larval Chironomidae (Insecta: Diptera) along a depth transect at Kigoma Bay, Lake Tanganyika (East Africa): implications for paleoecology and palaeoclimatology. Afr Entomol 16:162–184CrossRefGoogle Scholar
  15. Engels S, Cwynar L (2011) Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665:15–38CrossRefGoogle Scholar
  16. Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock Eval et ses applications 2de partie. Rev Inst Fr Pet 40:755–784Google Scholar
  17. European Union (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 on establishing a framework for community action in the field of water policy. J Eur Commun L327:1–72Google Scholar
  18. Free G, Solimini A, Rossaro B, Marziali L, Giacchini R, Paracchini B, Ghiani M, Vaccaro S, Gawlik BM, Fresner R, Santner G, Schönhuber M, Cardoso AC (2009) Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 633:123–136CrossRefGoogle Scholar
  19. Goedkoop W, Johnson R (1996) Pelagic-benthic coupling: profundal benthic community response to spring diatom deposition in mesotrophic Lake Erken. Limnol Oceanogr 41:636–647CrossRefGoogle Scholar
  20. Grimm EC (2004) TGView version 2.0.2. Illinois State Museum, Research and Collections Center, SpringfieldGoogle Scholar
  21. Hargrave C (2006) A test of three alternative pathways for consumer regulation of primary productivity. Oecologia 149:123–132CrossRefGoogle Scholar
  22. Heiri O (2004) Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. J Paleolimnol 32:67–84CrossRefGoogle Scholar
  23. Hofmann W (1988) The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeogr Palaeoclimatol Palaeoecol 62(501):509Google Scholar
  24. Hubault E (1943) Les grands lacs subalpins de Savoie sont-ils alcalitrophes? Arch Hydrobiol 40:240–249Google Scholar
  25. Jeppesen E, Søndergaard M, Mazzeo N, Meerhoff M, Branco C, Huszar V, Scasso F (2005) Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes, Chapter 11. In: Reddy MV (ed) Tropical eutrophic lakes: their restoration and management, pp 331–359Google Scholar
  26. Jones RI, Carter CE, Kelly A, Ward S, Kelly DJ, Grey J (2008) Widespread contribution of methane cycle bacteria to the diets of lake profundal chironomid larvae. Ecology 89:857–864CrossRefGoogle Scholar
  27. Juggins S (2009) Rioja: analysis of quaternary science data, R package version 0.5-6, http://cran.r-project.org/package=rioja
  28. Kansanen PK (1981) Effects of heavy pollution gradient on the zoobenthos in lake Vanajavesi, southern Finland, with special references to meiozoobenthos. Ann Zool Fennici 18:243–251Google Scholar
  29. Krishnaswami D, Lal JM, Martin M, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11:407–414CrossRefGoogle Scholar
  30. Kurek J, Cwynar L (2009) Effects of within-lake gradients on the distribution of fossil chironomids from maar lakes in western Alaska: implications for environmental reconstructions. Hydrobiologia 623:37–52CrossRefGoogle Scholar
  31. Langdon P, Ruiz Z, Wynne S, Sayer K, Davidson T (2010) Ecological influences on larval chironomid communities in shallow lakes: implications for palaeolimnological interpretations. Freshw Biol 55:531–545CrossRefGoogle Scholar
  32. Larocque I, Hall R, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322CrossRefGoogle Scholar
  33. Leroux M (1908) Recherches biologiques sur le lac d’Annecy. Ann Biol Lacu 2:220–387Google Scholar
  34. Lobinske R, Arshad A, Frouz J (2002) Ecological studies of spatial and temporal distributions of larval Chironomidae (Diptera) with emphasis on Glyptotendipes paripes (Diptera: Chironomidae) in three central Florida Lakes. Commun Ecosyst Ecol 31:637–647Google Scholar
  35. Luoto T (2012) Intra-lake patterns of aquatic insect and mite remains. J Paleolimnol 47:141–157CrossRefGoogle Scholar
  36. Manalt F, Beck C, Disnar JR, Deconinck JF, Recourt P (2001) Evolution of clay mineral assemblages and organic matter in the late glacial-Holocene sedimentary infill of Lake Annecy, (northwestern Alps): paleoenvironmental implications. J Paleolimnol 25:179–192Google Scholar
  37. Meriläinen J, Hynynen J, Teppo A, Palomäki A, Granberg K, Reinikainen P (2000) Importance of diffuse nutrient loading and lake level changes to the eutrophication of an originally oligotrophic boreal lake: a palaeolimnological diatom and chironomid analysis. J Paleolimnol 24:251–270CrossRefGoogle Scholar
  38. Meyers P, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of late quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  39. Michel H, Barci-Funel G, Dalmasso J, Ardisson G, Appleby PG, Haworth E, El-Daoushy F (2001) Plutonium, americium and cesium records in sediment cores from Blelham Tarn, Cumbria (UK). J Radioanal Nucl Chem 247:107–110CrossRefGoogle Scholar
  40. Millet L, Giguet-Covex C, Verneaux V, Druart JC, Adatte T, Arnaud F (2010) Reconstruction of the recent history of a large deep prealpine lake (Lake Bourget, France) using subfossil chironomids, diatoms, and organic matter analysis: towards the definition of a lake-specific reference state. J Paleolimnol 44:963–978CrossRefGoogle Scholar
  41. Millet L, Rius D, Galop D, Heiri O, Brooks SJ (2012) Chironomid-based reconstruction of Lateglacial summer temperatures from the Ech palaeolake record (French western Pyrenees). Palaeogeogr Palaeoclimatol Palaeoecol 315–316:86–99CrossRefGoogle Scholar
  42. Mousavi K, Sandring S, Amundsen PA (2002) Diversity of chironomid assemblages in contrasting subarctic lakes—impact of fish predation and lakes size. Arch Hydrobiol 154:461–484Google Scholar
  43. Nascimento F, Näslund J, Elmgren R (2012) Meiofauna enhances organic matter mineralization in soft sediment ecosystems. Limnol Oceanogr 57:338–346Google Scholar
  44. Nomade J (2005) Chronologie et sédimentologie du remplissage du lac d’Annecy depuis le Tardiglaciaire: implications paléoclimatologiques et paléohydrologiques. Thèse doctorale. Université de Savoie (France), p 197Google Scholar
  45. Oksanen J, Blanchet G, Kindt R, Legendre P, O’Hara R, Simpson G, Solymos P, Stevens H, Wagner H (2011) Vegan: community ecology package. R package version 1.17-11, http://CRAN.R-project.org/package=vegan
  46. Olafsson J, Paterson D (2004) Alteration of biogenic structure and physical properties by tube-building chironomid larvae in cohesive sediments. Aquat Ecol 38:219–229CrossRefGoogle Scholar
  47. Pardo CE, DelCampo PC (2007) Combinacion de metodos factoriales y de analisis de onglomerados en R: el paquete FactoClass. Revista Colombiana de Estadistica 3:235–245Google Scholar
  48. Perga ME, Desmet M, Enters D, Reyss JL (2010) A century of bottom-up- and top-down-driven changes on a lake planktonic food web: a paleoecological and paleoisotopic study of Lake Annecy, France. Limnol Oceanogr 55:803–816CrossRefGoogle Scholar
  49. Quinlan R, Smol J (2002) Regional assessment of long-term hypolimnetic oxygen changes in Ontario (Canada) shield lakes using subfossil chironomids. J Paleolimnol 27:249–260CrossRefGoogle Scholar
  50. Reyss J-L, Schmidt S, Legeleux F, Bonté P (1995) Large, low background well-type detectors for measurements of environmental radioactivity. Nucl Instrum Methods Phys Res Sect A 357:391–397CrossRefGoogle Scholar
  51. Robbins J, Edgington D (1975) Determination of recent sedimentation rates in Lake Michigan using 210Pb and 137Cs. Geochim Cosmochim Acta 39:285–304CrossRefGoogle Scholar
  52. Sæther OA (1975) Nearctic and palaearctic Heterotrissocladius (Diptera: Chironomidae). Bull Fish Res Board Canada 193:67Google Scholar
  53. Sæther OA (1979) Chironomid communities as water quality indicators. Holarctic Ecol 2:65–74Google Scholar
  54. Schmäh A (1993) Variation among fossil chironomid assemblages in surficial sediments of Bodensee-Untersee (SW-Germany): implications for paleolimnological interpretation. J Paleolimnol 9:99–108CrossRefGoogle Scholar
  55. Servettaz PL (1977) Eau, la vie d’un lac alpin: chronique de la sauvegarde du lac d’Annecy. p 280Google Scholar
  56. Smith JN (2001) Why should we believe 210Pb sediment geochronologies? J Environ Radioact 55:121–123CrossRefGoogle Scholar
  57. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org
  58. van Hardenbroek M, Heiri O, Wilhelm M, Lotter A (2011) How representative are subfossil assemblages of Chironomidae and common benthic invertebrates for the living fauna of Lake De Waay, the Netherlands? Aquat Sci 73:247–259CrossRefGoogle Scholar
  59. Vander Zanden J, Chandra S, Allen B, Reuter J, Goldman C (2003) Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California-Nevada) basin. Ecosystems 6:274–288CrossRefGoogle Scholar
  60. Vander Zanden J, Essington T, Vadeboncoeur Y (2005) Is pelagic top-down control in lakes augmented by benthic energy pathways? Can J Fish Aquat Sci 62:1422–1431CrossRefGoogle Scholar
  61. Walker I (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments: zoological indicators, vol 4. Kluwer Academic Publisher, Berlin, pp 43–66CrossRefGoogle Scholar
  62. Wiederholm T (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomol Scand (Suppl) 19:1–457Google Scholar
  63. Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). J Paleolimnol 36:407–429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Victor Frossard
    • 1
  • Laurent Millet
    • 1
  • Valérie Verneaux
    • 1
  • Jean-Philippe Jenny
    • 2
  • Fabien Arnaud
    • 2
  • Michel Magny
    • 1
  • Jérôme Poulenard
    • 2
  • Marie-Elodie Perga
    • 3
  1. 1.Laboratoire Chrono-EnvironnementUMR 6249Besançon CedexFrance
  2. 2.EDYTEMUMR 5204, Université de SavoieLe Bourget du Lac CedexFrance
  3. 3.INRAUMR 0042 CARRTELThononFrance

Personalised recommendations