Skip to main content

Diatom-inferred late Pleistocene and Holocene palaeolimnological changes in the Ioannina basin, northwest Greece

Abstract

The character and impact of climate change since the last glacial maximum (LGM) in the eastern Mediterranean region remain poorly understood. Here, two new diatom records from the Ioannina basin in northwest Greece are presented alongside a pre-existing record and used to infer past changes in lake level, a proxy for the balance between precipitation and evaporation. Comparison of the three records indicates that lake-level fluctuations were the dominant driver of diatom assemblage composition change, whereas productivity variations had a secondary role. The reconstruction indicates low lake levels during the LGM. Late glacial lake deepening was underway by 15.0 cal kyr BP, implying that the climate was becoming wetter. During the Younger Dryas stadial, a lake-level decline is recorded, indicating arid climatic conditions. Lake Ioannina deepened rapidly in the early Holocene, but long-term lake-level decline commenced around 7.0 cal kyr BP. The pattern of lake-level change is broadly consistent with an existing lake-level reconstruction at Lake Xinias, central Greece. The timing of the apparent change, however, is different, with delayed early Holocene deepening at Xinias. This offset is attributed to uncertainties in the age models, and the position of Xinias in the rain shadow of the Pindus Mountains.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ampel L, Wohlfarth B, Risberg J, Veres D (2008) Palaeolimnological response to millennial and centennial scale climate variability during MIS 3 and 2 as suggested by the diatom record in Les Echets, France. Quat Sci Rev 27:1493–1504

    Article  Google Scholar 

  2. Barker PA, Roberts N, Lamb HF, van der Kaars S, Benkaddour A (1994) Interpretation of Holocene lake-level change from diatom assemblages in Lake Sidi Ali, Middle Atlas, Morocco. J Paleolimnol 12:223–234

    Article  Google Scholar 

  3. Battarbee RW (1986) Diatom Analysis. In: Berglund BE (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 527–570

    Google Scholar 

  4. Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental changes using lake sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, pp 155–202

    Google Scholar 

  5. Bennion H, Appleby P, Phillips GL (2001) Reconstructing nutrient histories in the Norfolk Broads, UK: implications for the role of diatom-total phosphorus transfer functions in shallow lake management. J Paleolimnol 26:181–2004

    Article  Google Scholar 

  6. Birks HJB, Gordon AD (1985) Numerical methods in Quaternary pollen analysis. Academic Press, London

    Google Scholar 

  7. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    Article  Google Scholar 

  8. Clews JE (1989) Structural controls on basin evolution: Neogene to Quaternary of the Ionian zone, western Greece. J Geol Soc Lond 146:447–457

    Article  Google Scholar 

  9. Cremer H, Wagner B (2003) The diatom flora in the ultra-oligotrophic Lake El’gygytgyn, Chukotka. Polar Biol 26:105–114

    Google Scholar 

  10. Diefendorf AF, Patterson WP, Holmden C, Mullins HT (2007) Carbon isotopes of marl and lake sediment organic matter reflect terrestrial landscape change during the late glacial and early Holocene (16,800 to 5,540 cal yr B.P.): a multiproxy study of lacustrine sediments at Lough Inchiquin, western Ireland. J Paleolimnol 39:101–115

    Article  Google Scholar 

  11. Digerfeldt G, Olsson S, Sandgren P (2000) Reconstruction of lake level changes in Lake Xinias, central Greece, during the last 40,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 158:65–82

    Article  Google Scholar 

  12. Digerfeldt G, Olsson S, Sandgren P (2007) Reconstruction of Holocene lake-level changes in Lake Xinias, central Greece. Holocene 17:361–367

    Article  Google Scholar 

  13. Eglinton TI, Aluwihare AL, Bauer JE, Druffel ERM, McNichol AP (1996) Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Anal Chem 68:904–912

    Article  Google Scholar 

  14. Flower RJ (1993) Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269(270):473–484

    Article  Google Scholar 

  15. Frogley MR (1997) The biostratigraphy, palaeoecology and geochemistry of a long lacustrine sequence from NW Greece. Ph.D. thesis, University of Cambridge

  16. Galanidou N, Tzedakis PC (2001) New AMS dates from the Upper Palaeolithic Kastritsa. Proc Prehist Soc 67:271–278

    Google Scholar 

  17. Goericke R, Montoya JP, Fry B (1994) Physiology and isotopic fractionation in algae and cyanobacteria. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford

    Google Scholar 

  18. Hausmann S, Lotter AF, van Leeuwen JFN, Ohlendorf C, Lemcke G, Gronland E, Sturm M (2002) Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. Holocene 12:279–289

    Article  Google Scholar 

  19. Haworth EY (1975) A scanning electron microscopy study of some different frustule forms of the genus Fragilaria found in some Scottish late-glacial sediments. Br Phycol J 10:73–80

    Article  Google Scholar 

  20. Hegewald VE, Hindáková A (1997) Variability of a natural population and clones of the Cyclotella-ocellata-complex (Bacillariophyceae) from the Gallberg-pond, NW-Germany. Algol Stud 86:17–37

    Google Scholar 

  21. Hellenic National Meteorological Service (2012) Climatology: Ioannina. http://www.hnms.gr/hnms/english/climatology/climatology_region_diagrams_html?dr_city=Ioannina

  22. Higgs ES, Vita-Finzi C (1966) The climate, environment and industries of Stone Age Greece: part II. Proc Prehist Soc 32:1–29

    Google Scholar 

  23. Higgs ES, Vita-Finzi C, Harris DR, Fagg AE (1967) The climate, environment and industries of Stone Age Greece: part III. Proc Prehist Soc 33:1–29

    Google Scholar 

  24. Hodell DA, Brenner M, Curtis JH (2007) Climate and cultural history of the Northeastern Yucatan Peninsula, Quintana Roo, Mexico. Clim Change 83:215–240

    Article  Google Scholar 

  25. Jones TD (2010) A reconstruction of late Pleistocene and Holocene lake level changes at Ioannina, northwest Greece. PhD thesis, University of Leeds

  26. Kagalou I, Papastergiadou E, Leonardos I (2008) Long term changes in the eutrophication process in a shallow Mediterranean lake ecosystem of W. Greece: response after the reduction of external load. J Environ Manage 87:497–506

    Article  Google Scholar 

  27. King G, Bailey G, Sturdy D (1994) Active tectonics and human survival strategies. J Geophys Res Solid Earth 99:20063–20078

    Article  Google Scholar 

  28. Kotthoff U, Müller UC, Pross J, Schmiedl G, Lawson IT, ven de Schootbrugge B, Schulz H (2008) Lateglacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. Holocene 18:1019–1032

    Article  Google Scholar 

  29. Krammer K, Lange-Bertalot H (1986) Süsswasserflora van Mitteleuropa. Bacillariophyceae. 1. Teil: Naviculaceae, vol 2/1. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  30. Krammer K, Lange-Bertalot H (1988) Süsswasserflora van Mitteleuropa. Bacillariophyceae. 2. Teil: Epithemiaceae, Bacillariaceae, Surirellaceae, vol 2/2. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  31. Krammer K, Lange-Bertalot H (1991a) Süsswasserflora van Mitteleuropa. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, vol 2/3. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  32. Krammer K, Lange-Bertalot H (1991b) Süsswasserflora van Mitteleuropa. Bacillariophyceae. 4. Teil: Achnanthaceae, vol 2/4. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  33. Lawson IT, Frogley MR, Bryant CL, Preece RC, Tzedakis PC (2004) The Lateglacial and Holocene environmental history of the Ioannina basin, north-west Greece. Quat Sci Rev 23:1599–1625

    Article  Google Scholar 

  34. Leng MJ, Lamb AL, Heaton THE, Marshall JD, Wolfe BB, Jones MD, Holmes JA, Arrowsmith C (2005) Isotopes in lake sediments. In: Leng MJ (ed) Isotopes in palaeoenvironmental research. Springer, Dordrecht

    Google Scholar 

  35. Leng MJ, Baneschi I, Zanchetta G, Jex CN, Wagner B, Vogel H (2010) Late Quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes. Biogeosciences 7:3109–3122

    Article  Google Scholar 

  36. Levkov Z, Krstic S, Metzeltin D, Nakov T (2007) Diatoms of Lakes Prespa and Ohrid. About 500 taxa from ancient lake system. Iconographia Diatomologica, vol 16. ARG Gantner Verlag, Ruggell

    Google Scholar 

  37. Lionello P, Malanotte-Rizzoli P, Boscolo R, Alpert P, Artale V, Li L, Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E (2006) The Mediterranean climate: an overview of the main characteristics and issues. In: Lionello P, Malanotte-Rizzoli P, Boscolo R (eds) Developments in earth and environmental sciences 4: Mediterranean climate variability. Elsevier, Amsterdam, pp 1–18

    Google Scholar 

  38. Lowe JJ, Rasmussen SO, Björck S, Hoek WZ, Steffensen JP, Walker MJC, Yu ZC, INTIMATE group (2008) Synchronisation of palaeoenvironmental events in the North Atlantic region during the last termination: a revised protocol recommended by the INTIMATE group. Quat Sci Rev 27:6–17

    Article  Google Scholar 

  39. Magny M, de Beaulieu J-L, Drescher-Schneider R, Vannière B, Walter-Simonnet AV, Miras Y, Millet L, Bossuet G, Peyron O (2006) Climate oscillations in central Italy during the last glacial-Holocene transition: the record from Lake Accessa. J Quat Sci 21:311–320

    Article  Google Scholar 

  40. Magny M, de Beaulieu J-L, Drescher-Schneider R, Vannière B, Walter-Simonnet AV, Miras Y, Millet L, Bossuet G, Peyron O, Bruglapaglia E, Leroux A (2007) Holocene climate changes in the central Mediterranean as recorded by lake-level fluctuations at Lake Accesa (Tuscany, Italy). Quat Sci Rev 26:1736–1758

    Article  Google Scholar 

  41. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  42. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Volume 2: physical and geochemical techniques. Kluwer Academic Publishers, Dordrecht, pp 239–269

    Google Scholar 

  43. Ramsey CB (2001) Development of the radiocarbon calibration program OxCal. Radiocarbon 43:355–363

    Google Scholar 

  44. Reed JM, Cvetkoska A, Levkov Z, Vogel H, Wagner B (2010) The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate. Biogeosciences 7:3083–3094

    Article  Google Scholar 

  45. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CF, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150

    Google Scholar 

  46. Roberts N, Reed JM, Leng MJ, Kuzucuoglu C, Fontugne M, Bertaux J, Woldring H, Bottema S, Black S, Hunt E, Karabiyikoglu M (2001) The tempo of Holocene climatic change in the eastern Mediterranean region: new high-resolution crater-lake sediment data from central Turkey. Holocene 11:721–736

    Article  Google Scholar 

  47. Romero JR, Kagalou I, Imberger J, Hela D, Kotti M, Bartzokas A, Albanis T, Evmirides N, Karkabounas S, Papagiannis J, Bithava A (2002) Seasonal water quality of shallow and eutrophic Lake Pamvotis, Greece: implications for restoration. Hydrobiologia 474:91–105

    Article  Google Scholar 

  48. Rossignol-Strick M (1999) The Holocene climatic optimum and pollen records of sapropel 1 in the eastern Mediterranean, 9000-6000 BP. Quat Sci Rev 18:515–530

    Google Scholar 

  49. Ruff M, Wacker L, Gaggeler HW, Suter M, Synal H-A, Szidat S (2007) A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49:307–314

    Google Scholar 

  50. Rühland K, Paterson AM, Smol JP (2008) Hemispheric-scale patterns of climate-related shifts in planktonic diatoms from North American and European lakes. Glob Change Biol 14:1–15

    Google Scholar 

  51. Ryves DB, Juggins S, Fritz SC, Battarbee RW (2001) Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr Palaeoclimatol Palaeoecol 172:99–113

    Article  Google Scholar 

  52. Sayer CD (2001) Problems with the application of diatom-total phosphorus transfer functions: examples from a shallow English lake. Freshw Biol 46:743–757

    Article  Google Scholar 

  53. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004) Fragilaria and Staurosira (Bacillariophyceae) from sediment surfaces of 40 lakes in the Austrian Alps in relation to environmental variables, and their potential for palaeoclimatology. J Limnol 63:171–189

    Article  Google Scholar 

  54. Synal HA, Stocker M, Suter M (2007) MICADAS: a new compact radiocarbon AMS system. Nucl Instrum Methods B 259:7–13

    Article  Google Scholar 

  55. Talbot MR, Johannessen T (1992) A high resolution palaeoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet Sci Lett 111:23–27

    Article  Google Scholar 

  56. ter Braak CJF, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317

    Article  Google Scholar 

  57. Tzedakis PC (1994) Vegetation change through glacial-interglacial cycles: a long pollen sequence perspective. Philos Trans R Soc Lond B Biol Sci B345:403–432

    Google Scholar 

  58. Tzedakis PC (1999) The last climatic cycle at Kopais, central Greece. J Geol Soc Lond 156:425–434

    Article  Google Scholar 

  59. Tzedakis PC (2007) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26:2042–2066

    Article  Google Scholar 

  60. Uchikawa J, Popp BN, Schoonmaker JE, Xu L (2008) Direct application of compound-specific radiocarbon analysis of leaf waxes to establish lacustrine sediment chronology. J Paleolimnol 29:43–60

    Article  Google Scholar 

  61. Wagner B, Vogel H, Zanchetta G, Sulpizio R (2010) Environmental change within the Balkan region during the past ca. 50 ka recorded in the sediments from lakes Prespa and Ohrid. Biogeosciences 7:3187–3198

    Article  Google Scholar 

  62. Willis KJ (1994) The vegetational history of the Balkans. Quat Sci Rev 13:769–788

    Article  Google Scholar 

  63. Wilson GP, Reed JM, Lawson IT, Frogley MR, Tzedakis PC, Preece RC (2008) Diatom response to the last glacial-interglacial transition in the Ioannina basin, northwest Greece: implications for Mediterranean palaeoclimate reconstruction. Quat Sci Rev 27:428–440

    Article  Google Scholar 

  64. Wolin JA, Stone JR (2010) Diatoms as indicators of water-level change in freshwater lakes. In: Smol JP, Stoermer EF (eds) The diatoms: applications for the environmental and earth sciences, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  65. Wunsam S, Schmidt R, Klee R (1995) Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat Sci 57:360–386

    Article  Google Scholar 

Download references

Acknowledgments

TDJ gratefully acknowledges a Natural Environment Research Council studentship (NER/S/A/2006/14152), and financial help from the QRA New Researchers Award, the Dudley Stamp Memorial Fund, the Explorer’s Club Exploration Fund and the Ecology and Global Change Cluster Fund (University of Leeds). Radiocarbon dating and stable carbon isotope analysis was generously supported by NERC (allocations 1338.1008 and IP-1107-0509, respectively). Thanks are due to K. Roucoux, A. Milner, I. Kagalou, C. Michelaki and the Istria drilling team for fieldwork support, to J. Corr, D. Ashley and M. Ratcliffe for laboratory support, and to two anonymous reviewers for helpful comments and suggestions on the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy D. Jones.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jones, T.D., Lawson, I.T., Reed, J.M. et al. Diatom-inferred late Pleistocene and Holocene palaeolimnological changes in the Ioannina basin, northwest Greece. J Paleolimnol 49, 185–204 (2013). https://doi.org/10.1007/s10933-012-9654-x

Download citation

Keywords

  • Diatoms
  • Stable carbon isotopes
  • Ioannina
  • Lake-level change
  • Late Pleistocene
  • Holocene