Journal of Paleolimnology

, Volume 49, Issue 2, pp 117–127 | Cite as

Influence of sample location and livestock numbers on Sporormiella concentrations and accumulation rates in surface sediments of Lake Allos, French Alps

  • David EtienneEmail author
  • Bruno Wilhelm
  • Pierre Sabatier
  • Jean-Louis Reyss
  • Fabien Arnaud
Original paper


Spores of coprophilous fungi, especially Sporormiella, are often well preserved in lake sediment cores. It has been hypothesized that such spores can be used to quantify past livestock abundance. The quantitative relationship between fungal spore abundance and livestock populations, however, is not well established, nor are the mechanisms of spore transport and deposition in lacustrine systems. Multiple cores from Lake Allos, a large high-elevation lake in the French Alps, were used to map the modern abundance of Sordaria and Sporormiella spores throughout the lake. We observed high spatial heterogeneity with respect to spore numbers. No correlation with the distance from shoreline was found. There was, however, a relation with distance from the two main lake inlets. These results were used to select two fungi-rich sediment cores to investigate grazing pressure over the last two centuries. Comparisons were made between spore influx and historic data on livestock densities in the catchment. A sharp decrease in Sporormiella influx ca. 1894–1895 was associated with a reported reduction in sheep in the Allos catchment at that time. Mean influx of Sporormiella decreased by a factor of three between the nineteenth and twentieth centuries, reflecting a reduction in the reported number of animals in the Lake Allos catchment, from 6,000 to 2,000. This study confirmed that Sporormiella spore abundance in lake sediments can be used as a proxy for catchment herbivore numbers in paleoecological reconstructions. Nevertheless, our data indicate that before spore accumulation can be used to infer past domestic herbivore density, one must understand the processes of coprophilous spore transfer from the catchment to the lake and the influence of core location on spore numbers in the sediment.


Sporormiella Sordaria Coprophilous fungi Grazing reconstruction Modern sediment French Alps 



Logistical and financial support was provided by the French National Research Agency’s Pygmalion project (ANR BLAN07-2_204489) and the National Park of Mercantour. The authors thank Etienne Dambrine for his helpful comments and corrections on the manuscript. The comments of Melanie Riedinger-Whitmore and an anonymous reviewer greatly helped to improve the manuscript.


  1. Ahmad SE, Cain RF (1972) Revisions of the genera Sporormia and Sporormiella. Can J Bot 50:419–477CrossRefGoogle Scholar
  2. Appleby PG, Richardson N, Nolan PJ (1991) 241Am dating of lake sediments. Hydrobiologia 214:35–42CrossRefGoogle Scholar
  3. Arnaud F, Lignier V, Revel M, Desmet M, Pourchet M, Beck C, Charlet F, Trentesaux A, Tribovillard N (2002) Flood and earthquake disturbance of 210Pb geochronology (Lake Anterne, North French Alps). Terra Nova 14:225–232CrossRefGoogle Scholar
  4. Auer I, Böhm R, Jukovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stasny P, Lapin M, Szalai S, Szentimrey T, Cengar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovicp Z, Nieplovaq E (2007) HISTALP—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  5. Cugny C (2011) Apports des microfossiles non-polliniques à l’histoire du pastoralisme sur le versant nord-pyrénéen. Entre référentiels actuels et reconstitution du passé. PhD thesis, University of Toulouse le MirailGoogle Scholar
  6. Cugny C, Mazier F, Galop D (2010) Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Veget Hist Archaeobot 19:391–408CrossRefGoogle Scholar
  7. Currás A, Zamora L, Reed JM, Garciá-Soto E, Ferrero S, Armangol X, Mezquita-Joanes F, Marqués MA, Riera S, Julià R (2012) Climate change and human impact in central Spain during Roman times: high-resolution multi-proxy analysis of a tufa lake record (Somolinos, 1280 m asl). Catena 89:31–53CrossRefGoogle Scholar
  8. Davis OK (1987) Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quat Res 28:290–294CrossRefGoogle Scholar
  9. Davis OK, Schafer D (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeogr Palaeoclimatol Palaeoecol 237:40–50CrossRefGoogle Scholar
  10. Etienne D, Ruffaldi P, Goepp S, Ritz F, Georges-Leroy M, Pollier B, Dambrine E (2011) The origin of closed depressions in Northeastern France: a new assessment. Geomorphology 126:121–131CrossRefGoogle Scholar
  11. Fægri K, Iversen J (1989) Textbook of Pollen Analysis. John Wiley and Sons, Chichester-New York-Brisbane-Toronto-SingaporeGoogle Scholar
  12. Galop D, Houet T, Mazier F, Leroux G, Rius D (2011) Grazing activities and biodiversity history in the Pyrenees: new insights on high altitude ecosystems in the framework of a Human-Environment Observatory. PAGES News 19:53–55Google Scholar
  13. Giguet-Covex C, Arnaud F, Poulenard J, Disnar JR, Delhon C, Francus P, David F, Enters D, Rey PJ, Delannoy JJ (2011) Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred and from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): the role of climate human activities. Holocene 21:651–665CrossRefGoogle Scholar
  14. Goldberg ED (1963) Geochronology with 210Pb Radioactive Dating. IAEA, Vienna, pp 121–131Google Scholar
  15. Innes JB, Blackford JJ (2003) The ecology of Late Mesolithic woodland disturbances: model testing with fungal spore assemblage data. J Archaeol Sci 30:185–194CrossRefGoogle Scholar
  16. Mazier F, Galop D, Gaillard MJ, Rendu C, Cugny C, Amaïa L, Peyron O, Buttler A (2009) Multidisciplinary approach to reconstruct pastoral activities. An example from the Pyrenean Mountains (Pays Basque). Holocene 19:171–188CrossRefGoogle Scholar
  17. Mighall TM, Martínez Cortizas A, Biester H, Turner SE (2006) Proxy climate and vegetation changes during the last five millennia in NW Iberia: pollen and non-pollen palynomorph data from two ombrotrophic peat bogs in the North Western Iberian Peninsula. Rev Palaeobot Palynol 141:203–223CrossRefGoogle Scholar
  18. Mocci F, Walsh K, Richer S, Court-Picon M, Talon B, Tzortzis S, Palet-Martinez JP, Bressy C (2008) Archaeology and paleoenvironment in the Southern French Alps: the Late Neolithic to the Roman Period in the Argentiérois, Champsaur and Ubaye high altitude massifs. Cah Paleoenviron 6:253–272Google Scholar
  19. Parker NE, Williams JW (2012) Influence of climate, cattle density and lake morphology on Sporormiella abundances in modern lake sediments in the U.S. Great Plains. Holocene 22:475–483CrossRefGoogle Scholar
  20. Pelissier JE (1901) Histoire d’Allos—depuis les temps les plus reculés jusqu’à nos jours. Micberth publishing, DigneGoogle Scholar
  21. Rapper D, Bush M (2009) A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quat Res 71:490–496CrossRefGoogle Scholar
  22. Reyss JL, Schimdt S, Legeleux F, Bonte P (1995) Large low background well type detectors for measurements of environmental radioactivity. Nucl Instrum Methods Phys Res 357:391–397CrossRefGoogle Scholar
  23. Richardson MJ (2001) Diversity and occurrence of coprophilous fungi. Mycol Res 105:387–402CrossRefGoogle Scholar
  24. Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spore 13:615–621Google Scholar
  25. Van der Knaap WO, Lamentowicz M, van Leeuwen JFN, Hangartner S, Leuenberger M, Mauquoy D, Goslar T, Mitchell EAD, Lamentowicz L, Kamenik C (2011) A multi-proxy, high resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps. Quat Sci Rev 30:3467–3480CrossRefGoogle Scholar
  26. van Geel B (2002) Non-pollen palynomorphs. In: Smol JD, Birks JB, Last WM (eds) Tracking environmental change using lake sediments, vol 3., Terrestrial, algal, and siliceous indicatorsKluwer, Dordrecht, pp 99–119CrossRefGoogle Scholar
  27. van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883CrossRefGoogle Scholar
  28. van Geel B, Zazula GD, Schweger CE (2007) Spores of coprophilous fungi from under the Dawson tephra (25,300 14C yeras BP), Yukon Territory, northwestern Canada. Palaeogeogr Palaeoclimatol Palaeoecol 252:481–485CrossRefGoogle Scholar
  29. West GJ (2003) A late Pleistocene-Holocene pollen record of vegetation change from Little Willow Lake, Larsen Volcanic National Park. California. Conference Proceedings, PACLIM, pp 65–80Google Scholar
  30. Wilhelm B, Arnaud F, Sabatier P, Crouzet C, Brisset E, Chaumillon E, Disnar JP, Guiter F, Malet E, Reyss JL, Tachikawa K, Bard E, Delannoy JL (2012) 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms. Quat Res 78:1–12CrossRefGoogle Scholar
  31. Williams JJ, Gosling WD, Coe AL, Brooks SJ, Gulliver P (2011) Four thousand years of environmental change and human activity in the Cochabamba Basin, Bolivia. Quat Res 76:58–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • David Etienne
    • 1
    • 2
    Email author
  • Bruno Wilhelm
    • 3
  • Pierre Sabatier
    • 3
  • Jean-Louis Reyss
    • 4
  • Fabien Arnaud
    • 3
  1. 1.Chrono-environment LaboratoryUMR 6249, Université de Franche-Comté-CNRSBesançon CedexFrance
  2. 2.CARRTEL LaboratoryUniversité de SavoieLe Bourget du Lac CedexFrance
  3. 3.EDYTEM LaboratoryUMR 5204, Université de Savoie-CNRSLe Bourget du LacFrance
  4. 4.LSCE LaboratoryUMR 8212, Université de Versailles Saint-Quentin CEA-CNRSGif-sur-Yvette CedexFrance

Personalised recommendations