Skip to main content

Advertisement

Log in

Differential post-depositional mobility of phosphorus species in lake sediments

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Historically, paleolimnologists have been cautious about interpreting sedimentary total phosphorus (P) profiles because of the well-documented post-depositional mobility of P. There is recent new attention given to the interpretation of component P fractions that are generally indicative of broad categories of chemical P species in sediments. Using homogenized sediments collected from 5 lakes with differing characteristics, the mobilities of total P, and of NH4Cl-, BD-, NaOH-, and HCl-extractible P were measured in short term incubations (15–24 weeks). Almost all of the observed mobility of total P could be explained by the mobility of reductant-soluble BD–P, with a smaller contribution from NaOH–P. In contrast, HCl–P (apatite) and organic-P showed no significant movement. These results reaffirm that sedimentary TP profiles should be interpreted with caution, and that component P species, particularly NH4Cl-, BD-, and NaOH–P are also prone to post-depositional mobility. In contrast, HCl–P and organic-P appear to be more reliable proxies for paleolimnological reconstructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersen JM (1976) An ignition method for determination of total phosphorus in lake sediments. Water Res 10:329–331

    Article  Google Scholar 

  • Boyle JF (2007) Loss of apatite caused irreversible early-Holocene lake acidification. Holocene 17:543–547

    Article  Google Scholar 

  • Brezonik PL, Engstrom DR (1998) Modern and historic accumulation rates of phosphorus in Lake Okeechobee, Florida. J Paleolimnol 20:31–46

    Article  Google Scholar 

  • Burger DF, Hamilton DP, Pilditch CA, Gibbs MM (2007) Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiology 584:13–25

    Article  Google Scholar 

  • Carignan R, Flett RJ (1981) Postdepositional mobility of phosphorus in lake sediments. Limnol Oceanogr 26:361–366

    Article  Google Scholar 

  • Chen CR, Condron LM, Xu ZH (2008) Impacts of grassland afforestation with coniferous trees on soil phosphorus dynamics and associated microbial processes: a review. For Ecol Manag 255:396–409

    Article  Google Scholar 

  • Dean WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sed Petrol 44:242–248

    Google Scholar 

  • Dillon PJ, Rigler FH (1975) A simple method for predicting the capacity of a lake for development based on lake trophic status. J Fish Res Bd Canada 32:1519–1531

    Article  Google Scholar 

  • Engstrom DR, Fritz SC, Almendinger JE, Juggins S (2000) Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408:161–166

    Article  Google Scholar 

  • Engstrom DR, Almendinger JE, Wolin JA (2009) Historical changes in sediment and phosphorus loading to the upper Mississippi River: mass-balance reconstructions from the sediment of Lake Pepin. J Paleolimnol 41:563–588

    Article  Google Scholar 

  • Filippelli GM, Souch C (1999) Effects of climate and landscape development on the terrestrial phosphorus cycle. Geology 27:171–174

    Article  Google Scholar 

  • Filippelli GM, Souch C, Menounos B, Slater-Atwater S, Jull AJT, Slaymaker O (2006) Alpine lake sediment records of the impact of glaciation and climate change on the biogeochemical cycling of soil nutrients. Quat Res 66:158–166

    Article  Google Scholar 

  • Filippelli GM, Souch C, Horn SP, Newkirk D (2010) The pre-Columbian footprint on terrestrial nutrient cycling in Costa Rica: insights from phosphorus in a lake sediment record. J Paleolimnol 43:843–856

    Article  Google Scholar 

  • Gächter R, Müller B (2003) Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol Oceanogr 48:929–933

    Article  Google Scholar 

  • Garcia-Montiel DC, Neill C, Melillo J, Thomas S, Steudler PA, Cerri CC (2000) Soil phosphorus transformations following forest clearing for pasture in the Brazilian Amazon. Soil Sci Soc Am J 64:1792–1804

    Article  Google Scholar 

  • Grossmann EB, Mladenoff DJ (2008) Farms, fires, and forestry: disturbance legacies in the soils of the Northwest Wisconsin (USA) Sand Plain. For Ecol Manag 256:827–836

    Article  Google Scholar 

  • Hietljes AHM, Lijklema L (1980) Fractionation of inorganic phosphates in calcareous sediments. J Environ Qual 9:405–407

    Google Scholar 

  • Hupfer M, Gächter R, Giovanoli R (1995) Transformation of phosphorus species in settling seston and during early diagenesis. Aquat Sci 57:305–324

    Article  Google Scholar 

  • Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron:phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiol 235(236):731–743

    Article  Google Scholar 

  • Kirchner WB, Dillon PJ (1975) An empirical method of estimating the retention of phosphorus in lakes. Water Resour Res 11:181–182

    Article  Google Scholar 

  • McColl RHS (1977) Chemistry of sediments in relation to trophic conditions in eight Rotorua Lakes, New Zealand. J Mar Freshwat Res 11:509–523

    Article  Google Scholar 

  • Norton SA, Perry RH, Saros JE, Jacobson GL, Fernandez IJ, Kopáček J, Wilson TA, SanClements MD (2011) The controls on phosphorus availability in a Boreal lake ecosystem since deglaciation. J Paleolimnol 46:107–122

    Article  Google Scholar 

  • Nürnberg GK (1988) Prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments. Can J Fish Aquat Sci 45:453–462

    Article  Google Scholar 

  • Nürnberg GK, Shaw M, Dillon PJ, McQueen DJ (1986) Internal phosphorus load in an oligotrophic Precambrian Shield lake with an anoxic hypolimnion. Can J Fish Aquat Sci 43:574–580

    Article  Google Scholar 

  • Ostrofsky ML (1978) Modification of phosphorus retention models for use with lakes with low areal water loading. J Fish Res Bd Canada 35:1532–1536

    Article  Google Scholar 

  • Ostrofsky ML (1987) Phosphorus species in the surficial sediments of lakes in eastern North America. Can J Fish Aquat Sci 44:960–966

    Article  Google Scholar 

  • Ostrofsky ML, Schworm AE (2011) A history of acid mine contamination, recovery, and eutrophication in Sandy Lake, Pennsylvania. J Paleolimnol 46:229–242

    Article  Google Scholar 

  • Ostrofsky ML, Osborne DA, Zebulske TJ (1989) Relationship between anaerobic sediment phosphorus release rates and sedimentary phosphorus species. Can J Fish Aquat Sci 46:416–419

    Article  Google Scholar 

  • Peters RH (1986) The role of prediction in limnology. Limnol Oceanogr 31:1143–1159

    Article  Google Scholar 

  • Petticrew EL, Arocena JM (2001) Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Sci Tot Environ 266:87–93

    Article  Google Scholar 

  • Psenner R, Boström B, Dinka M, Pettersson K, Pucsko R, Sager M (1988) Fractionation of phosphorus in suspended matter and sediment. Ergeb Limnol 30:98–109

    Google Scholar 

  • Reitzel K, Ahlgren J, DeBrabandere H, Waldebäck M, Gogloo A, Tranvik L, Rydin E (2007) Degradation rates of organic phosphorus in lake sediment. Biogeochem 82:15–28

    Article  Google Scholar 

  • Rydin E (2000) Potentially mobile phosphorus in Lake Erken sediment. Wat Res 34:2037–2042

    Article  Google Scholar 

  • Schelske CL, Conley DJ, Stoermer EF, Newberry TL, Campbell CD (1986) Biogenic silica and phosphorus accumulation in sediment as indices of eutrophication in the Laurentian Great Lakes. Hydrobiol 143:79–86

    Article  Google Scholar 

  • Schlesinger WH (1991) Biogeochemistry: an analysis of global change. Academic Press, New York

    Google Scholar 

  • Snodgrass WJ, O’Melia CR (1975) Predictive model for phosphorus in lakes. Environ Sci Technol 9:937–944

    Article  Google Scholar 

  • Søndergaard M, Kristensen P, Jeppesen E (1993) Eight years of internal phosphorus loading and changes in the sediment phosphorus profile of Lake Søbygaard, Denmark. Hydrobiology 253:345–356

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2001) Retention and internal loading of phosphorus in shallow, eutrophic lakes. Sci World 1:427–442

    Article  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiology 506–509:135–145

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa (Bull. 167)

  • Triplett LD, Engstrom DR, Elund MB (2009) A whole-basin stratigraphic record of sediment and phosphorus loading to the St. Croix River, USA. J Paleolimnol 41:659–677

    Article  Google Scholar 

  • Trolle D, Zhu G, Hamilton D, Luo L, McBride C, Zhang L (2009) The influence of water quality and sediment geochemistry on the horizontal and vertical distribution of phosphorus and nitrogen in sediments of a large, shallow lake. Hydrobiology 627:31–44

    Article  Google Scholar 

  • Valsami-Jones E, Ragnarsdottir KV, Puntis A, Bosbach D, Kemp AJ, Cressey G (1998) The dissolution of apatite in the presence of aqueous metal cations at pH 2–7. Chem Geol 151:215–233

    Article  Google Scholar 

  • Vollenweider RA (1969) Möglichkeiten und Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch Hydrobiol 66:1–36

    Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    Article  Google Scholar 

  • Waters MN, Schelske CL, Kenney WF, Chapman AD (2005) The use of sedimentary algal pigments to infer historic algal communities in Lake Apopka, Florida. J Paleolimnol 33:53–71

    Article  Google Scholar 

  • Whitney GG, DeCant JP (2003) Physical and historical determinants of the pre- and post-settlement forests of northwestern Pennsylvania. Can J For Res 33:1683–1697

    Article  Google Scholar 

  • Williams JDH, Shear H, Thomas RL (1980) Availability to Scenedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnol Oceanogr 25:1–11

    Article  Google Scholar 

Download references

Acknowledgments

I thank P. Guilizzoni and two anonymous reviewers for their thoughtful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Ostrofsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrofsky, M.L. Differential post-depositional mobility of phosphorus species in lake sediments. J Paleolimnol 48, 559–569 (2012). https://doi.org/10.1007/s10933-012-9631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-012-9631-4

Keywords

Navigation