Skip to main content

Holocene environmental change in southern Spain deduced from the isotopic record of a high-elevation wetland in Sierra Nevada

Abstract

Small lakes and wetlands from high elevation within the Sierra Nevada Range (southern Spain) preserve a complete post-glacial Holocene record. Isotopic, TOC and C/N analyses, carried out on a sediment core, show various stages in the evolution of the Borreguiles de la Virgen, which today constitute a small bog at about 2,950 m above sea level. Glacial erosion generated a cirque depression, which became a small lake during the first phase of infilling (from 8,200 to 5,100 cal yr BP), as suggested by sedimentary evidence, including an atomic C/N ratio generally below 20, low TOC values and the highest δ13C and δ15N values of the record. These results imply significant algal productivity, which is confirmed by the microscopic algal remains. Drier conditions became established progressively in this area from 5,100 to 3,700 cal yr BP. Subsequently, the lake evolved into a bog as shown by geochemical evidence (C/N ratios above 20, high TOC content and low δ13C values). Unstable conditions prevailed from 3,600 to 700 cal yr BP; an extremely low sedimentation rate and scarcity of data from this period do not allow us to make a coherent interpretation. Fluctuating conditions were recorded during the last ~700 cal yr BP, with wetter conditions prevailing during the first part of the interval (with C/N rate below 20) up to 350 years ago. In general, a gradual trend toward more arid conditions occurred since ~6,900 cal yr BP, with a further increase in aridity since ~5,100 cal yr BP. This evidence is consistent with other contemporaneous peri-Mediterranean records.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson RS, Jiménez-Moreno G, Carrión J, Pérez-Martinez C (2011) Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1615–1629

    Article  Google Scholar 

  2. Bar-Matthews M, Ayalon A, Kaufmann A (2000) Timing and hydrological conditions of sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chem Geol 169:145–156

    Article  Google Scholar 

  3. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ15N and δ13C signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  4. Carrión JS (2002) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2047–2066

    Article  Google Scholar 

  5. Carrión JS, Munuera M, Dupré M, Andrade A (2001) Abrupt vegetation changes in the Segura mountains of southern Spain throughout the Holocene. J Ecol 89:783–797

    Article  Google Scholar 

  6. Carrión JS, Sánchez-Gómez P, Mota JF, Yll EI, Chaín C (2003) Fire and grazing are contigent on the Holocene vegetation dynamics of Sierra de Gádor, southern Spain. Holocene 13:839–849

    Article  Google Scholar 

  7. Carrión JS, Fuentes N, González-Sampériz P, Sánchez Quirante L, Finlayson JC, Fernández S, Andrade A (2007) Holocene environmental change in a montane región of sourthern Europe with a long history of human settlement. Quat Sci Rev 26:1455–1475

    Article  Google Scholar 

  8. Carrión JS, Fernández S, González-Sampériz P, Leroy SAG, Bailey GN, López-Sáez JA, Burjachs F, Gil-Romera G, García-Antón M, Gil-García MJ, Parra I, Santos L, López-García P, Yll EI, Dupré M (2009) Quaternary pollen analysis in the Iberian Peninsula: the value of negative results. Internet Archaeol 25:1–53

    Google Scholar 

  9. Carrión JS, Fernández S, Jiménez-Moreno G, Fauquette S, Gil-Romera G, González-Sampériz P, Finlayson C (2010) The historical origins of aridity and vegetation degradation in southeastern Spain. J Arid Environ 74:731–736

    Article  Google Scholar 

  10. Castillo Martín A (2009) Lagunas de Sierra Nevada. Editorial Universidad de Granada, Granada

    Google Scholar 

  11. Debret M, Sebag D, Crosta X, Massei N, Petit JR, Chapron E, Bout-Roumazeilles V (2009) Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing. Quat Sci Rev 28:2675–2688

    Article  Google Scholar 

  12. deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361

    Article  Google Scholar 

  13. Dormoy I, Peyron O, Combourieu Nebout N, Goring S, Kotthoff U, Magny M, Pross J (2009) Terrestrial climate variability and seasonality changes in the Mediterranean region between 15,000 and 4000 years BP deduced from marine pollen records. Clim Past 5:615–632

    Article  Google Scholar 

  14. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  Google Scholar 

  15. Ficken KJ, Barber KE, Eglinton G (1998) Lipid biomarker, δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millenia. Org Geochem 28:217–237

    Article  Google Scholar 

  16. Fletcher W, Zielhofer C (in press) Fragility of Western Mediterranean landscapes during Holocene Rapid Climate Changes. Catena. doi:10.1016/j.catena.2011.05.001

  17. Fletcher W, Boski T, Moura D (2007) Palynological evidence for environmental and climatic change in the lower Guadiana valley (Portugal) during the last 13,000 years. Holocene 17:479–492

    Article  Google Scholar 

  18. Fletcher W, Sánchez-Goñi MF, Peyron O, Dormoy I (2010) Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Clim Past 6:245–264

    Article  Google Scholar 

  19. Fogel ML, Tuross N (1999) Transformation of plant biochemicals to geological macromolecules during early diagénesis. Oecologia 120:336–346

    Article  Google Scholar 

  20. Galimov EM (1985) The biological fractionation of isotopes. Academic Press, Orlando

    Google Scholar 

  21. Gil-Romera G, Carrión JS, Pausas JG, Sevilla-Callejo M, Lamb HF, Fernández S, Burjachs F (2010) Holocene fire activity and vegetation response in Southeastern Iberia. Quat Sci Rev 29:1082–1092

    Article  Google Scholar 

  22. Gómez Ortiz A, Schulte L, Salvador Franch F (1996) Contribución al conocimiento de la glaciación reciente y morfología asociada del Corral del Veleta (Sierra Nevada). Cuad Lab Xeol Laxe 21:543–558

    Google Scholar 

  23. Herczeg AL, Smith AK, Dighton JC (2001) A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N, and δ13C in sediments. Appl Geochem 16:73–84

    Article  Google Scholar 

  24. Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214

    Article  Google Scholar 

  25. Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quat Int 200:4–18

    Article  Google Scholar 

  26. Jimenez-Espejo FJ, Martínez-Ruiz F, Rogerson M, González-Donoso JM, Romero OE, Linares D, Sakamoto T, Gallego-Torres D, Rueda Ruiz JL, Ortega-Huertas M, Pérez Claros JA (2008) Detrital input, productivity fluctuations, and watermass circulation in the westernmost Mediterranean Sea since the Last Glacial Maximum. Geochem Geophys Geosyst 9:Q11U02

    Article  Google Scholar 

  27. Jiménez-Moreno G, Anderson RS (2012) Holocene vegetation and climate change recorded in alpine bog sediments, Sierra Nevada, southern Spain. Quat Res 77:44–53

    Article  Google Scholar 

  28. Lézine AM, Duplessy JC, Cazet JP (2005) West African monsoon variability during the last deglaciation and the Holocene: evidence from fresh water algae, pollen and isotope data from core KW31, Gulf of Guinea. Palaeogeogr Palaeoclimatol Palaeoecol 219:225–237

    Article  Google Scholar 

  29. Magny M (2004) Holocene climatic variability as reflected by mid- European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quat Int 113:65–79

    Article  Google Scholar 

  30. Magny M, Miramont C, Sivan O (2002) Assessment of the impact of climate and anthropogenic factors on Holocene Mediterranean vegetation in Europe on the basis of palaeohydrological records. Palaeogeogr Palaeoclimatol Palaeoecol 186:47–59

    Article  Google Scholar 

  31. Magri D, Parra I (2002) Late quaternary western Mediterranean pollen records and African winds. Earth Planet Sci Lett 200:401–408

    Article  Google Scholar 

  32. Martín-Puertas C, Jiménez-Espejo F, Martínez Ruiz F, Nieto-Moreno V, Rodrigo M, Mata MP, Valero-Garcés BL (2010) Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. Clim Past 6:1655–1683

    Article  Google Scholar 

  33. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 113:289–302

    Article  Google Scholar 

  34. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  35. Meyers PA, Horie S (1993) An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr Palaeoclimatol Palaeoecol 105:171–178

    Article  Google Scholar 

  36. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  37. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments, vol 2. Kluwer, Dordrecht, pp 239–270

    Chapter  Google Scholar 

  38. Morales-Baquero R, Carrillo P, Reche I, Sánchez-Castillo P (1999) Nitrogen–phosphorus relationship in high mountain lakes: effects of the size of catchment basins. Can J Fish Aquat Sci 56:1809–1817

    Article  Google Scholar 

  39. Morellón M, Valero-Garcés BL, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero O, Engstrom DR, López-Vicente M, Navas A, Soto J (2011) Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol 46:423–452

    Article  Google Scholar 

  40. Moreno A, López-Merino L, Leira M, Marco-Barba J, González-Sampériz P, Valero-Garcés BL, López-Sáez A, Santos L, Mata P, Ito E (2011) Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J Paleolimnol 46:327–349

    Article  Google Scholar 

  41. Mulitza S, Heslop D, Pittauerova D, Fischer HW, Meyer I, Stuut JB, Zabel M, Mollenhauer G, Collins JA, Kuhnert H, Schulz M (2010) Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466:226–228

    Article  Google Scholar 

  42. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  Google Scholar 

  43. O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Article  Google Scholar 

  44. Oliva M, Gómez Ortiz A, Schulte L, Salvador F (2009) Procesos periglaciares actuales en Sierra Nevada. Distribución y morfometría de los lóbulos de solifluxión. Nimbus 23–24:133–148

    Google Scholar 

  45. Ortiz JE, Torres T, Delgado A, Julià R, Lucini M, Llamas FJ, Reyes E, Soler V, Valle M (2004) The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies. Org Geochem 35:1243–1260

    Article  Google Scholar 

  46. Rodrigo Gámiz M, Martínez Ruiz F, Jiménez Espejo FJ, Gallego Torres D, Nieto Moreno V, Martín Ramos D, Ariztegui D, Romero O (2010) Impact of climate variability in the western Mediterranean during the last 20,000 years: oceanic and atmospheric responses. Quat Sci Rev 15–16:2018–2034

    Google Scholar 

  47. Sadori L, Narcisi B (2001) The post-glacial record of environmental history from Lago di Pergusa (Sicily). Holocene 11:655–671

    Article  Google Scholar 

  48. Sarmaja-Korjonen K, Seppänen A, Bennike O (2006) Pediastrum algae from the classic late glacial Bølling Sø site, Denmark: response of aquatic biota to climate change. Rev Palaeobot Palynol 138:95–107

    Article  Google Scholar 

  49. Schulte L (2002) Climatic and human influence on river systems and glacier fluctuations in southeast Spain since the Last Glacial Maximum. Quat Int 93–94:85–100

    Article  Google Scholar 

  50. Street FA, Grove AT (1979) Global maps of lake-level fluctuations since 30,000 years BO. Quat Res 12:83–118

    Article  Google Scholar 

  51. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac FG, Plicht J, Spurk M (1998) INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40:1041–1083

    Google Scholar 

  52. Talbot MR (2001) Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 401–439

    Google Scholar 

  53. Talbot MR, Laerdal T (2000) The Lake Pleistocene-Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164

    Article  Google Scholar 

  54. Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by d15 N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813

    Article  Google Scholar 

  55. Valero-Garcés BL, Moreno A (2011) Iberian lacustrine sediment records: responses to past and recent global changes in the Mediterranean región. J Paleolimnol 46:319–325

    Article  Google Scholar 

  56. Valle F (2003) Mapa de Series de Vegetación de Andalucía. Editorial Rueda S.I, Madrid

    Google Scholar 

  57. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  58. Wolfe BB, Edwards TWD, Beuning KRM, Elgood RJ (2001) Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 373–400

    Google Scholar 

  59. Zanchetta G, Drysdale RN, Hellstrom JC, Fallick AE, Isola I, Gagan MK, Pareschi MT (2007) Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quat Sci Rev 26:279–286

    Article  Google Scholar 

  60. Zhornyak LV, Zanchetta G, Drysdale RN, Hellstrom JC, Isola I, Regattieri E, Piccini L, Baneschi I, Couchoud I (2011) Stratigraphic evidence for a “pluvial phase” between 8200–7100 ka from Renella cave (Central Italy). Quat Sci Rev 30:409–417

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Antonio P. Jiménez (UGR) and Guillermo Aparicio Brandau for help with coring; Regino Zamora, Pascual Rivas Carrera; Carmen Pérez, Laura Jiménez (all from UGR) and Javier Sánchez (Parque Nacional de Sierra Nevada) for logistical assistance; personnel of the Parque Nacional de Sierra Nevada for field assistance; and John Southon (UCI) for 14C dates. This work was supported by a grant from the OAPN (Ministerio de Medio Ambiente) Project 087/2007, Project CGL2007-60774/BTE, Project CGL2007-65572-C02-01/BTE and Project CGL2010-21257-C02-01 of the Ministerio de Educación y Ciencia of Spain, and the research groups RNM0190, RNM179 and RNM309 of the “Junta de Andalucía”. It also was partially financed by the ERA-NET European Partnership in Polar Climate Science (EUROPOLAR)—EUI2009-04040, MCINN CTM2011-24079 and the project RNM 8011 of the Junta de Andalucía. A. G.-A. was also supported by a Juan de la Cierva contract from the Spanish Ministerio de Ciencia e Innovación. F. J. Jiménez-Espejo acknowledges funding from the CSIC “JAE-Doc” postdoctoral program. Northern Arizona University Laboratory of Paleoecology Contribution 140. Comments and suggestions by two anonymous reviewers and by the Editor T. J. Whitmore are kindly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio García-Alix.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

García-Alix, A., Jiménez-Moreno, G., Anderson, R.S. et al. Holocene environmental change in southern Spain deduced from the isotopic record of a high-elevation wetland in Sierra Nevada. J Paleolimnol 48, 471–484 (2012). https://doi.org/10.1007/s10933-012-9625-2

Download citation

Keywords

  • Holocene
  • Wetlands
  • Southern Spain
  • Isotopic geochemistry
  • Organic matter