Journal of Paleolimnology

, Volume 48, Issue 3, pp 471–484 | Cite as

Holocene environmental change in southern Spain deduced from the isotopic record of a high-elevation wetland in Sierra Nevada

  • Antonio García-AlixEmail author
  • Gonzalo Jiménez-Moreno
  • R. Scott Anderson
  • Francisco J. Jiménez Espejo
  • Antonio Delgado Huertas
Original paper


Small lakes and wetlands from high elevation within the Sierra Nevada Range (southern Spain) preserve a complete post-glacial Holocene record. Isotopic, TOC and C/N analyses, carried out on a sediment core, show various stages in the evolution of the Borreguiles de la Virgen, which today constitute a small bog at about 2,950 m above sea level. Glacial erosion generated a cirque depression, which became a small lake during the first phase of infilling (from 8,200 to 5,100 cal yr BP), as suggested by sedimentary evidence, including an atomic C/N ratio generally below 20, low TOC values and the highest δ13C and δ15N values of the record. These results imply significant algal productivity, which is confirmed by the microscopic algal remains. Drier conditions became established progressively in this area from 5,100 to 3,700 cal yr BP. Subsequently, the lake evolved into a bog as shown by geochemical evidence (C/N ratios above 20, high TOC content and low δ13C values). Unstable conditions prevailed from 3,600 to 700 cal yr BP; an extremely low sedimentation rate and scarcity of data from this period do not allow us to make a coherent interpretation. Fluctuating conditions were recorded during the last ~700 cal yr BP, with wetter conditions prevailing during the first part of the interval (with C/N rate below 20) up to 350 years ago. In general, a gradual trend toward more arid conditions occurred since ~6,900 cal yr BP, with a further increase in aridity since ~5,100 cal yr BP. This evidence is consistent with other contemporaneous peri-Mediterranean records.


Holocene Wetlands Southern Spain Isotopic geochemistry Organic matter 



We wish to thank Antonio P. Jiménez (UGR) and Guillermo Aparicio Brandau for help with coring; Regino Zamora, Pascual Rivas Carrera; Carmen Pérez, Laura Jiménez (all from UGR) and Javier Sánchez (Parque Nacional de Sierra Nevada) for logistical assistance; personnel of the Parque Nacional de Sierra Nevada for field assistance; and John Southon (UCI) for 14C dates. This work was supported by a grant from the OAPN (Ministerio de Medio Ambiente) Project 087/2007, Project CGL2007-60774/BTE, Project CGL2007-65572-C02-01/BTE and Project CGL2010-21257-C02-01 of the Ministerio de Educación y Ciencia of Spain, and the research groups RNM0190, RNM179 and RNM309 of the “Junta de Andalucía”. It also was partially financed by the ERA-NET European Partnership in Polar Climate Science (EUROPOLAR)—EUI2009-04040, MCINN CTM2011-24079 and the project RNM 8011 of the Junta de Andalucía. A. G.-A. was also supported by a Juan de la Cierva contract from the Spanish Ministerio de Ciencia e Innovación. F. J. Jiménez-Espejo acknowledges funding from the CSIC “JAE-Doc” postdoctoral program. Northern Arizona University Laboratory of Paleoecology Contribution 140. Comments and suggestions by two anonymous reviewers and by the Editor T. J. Whitmore are kindly acknowledged.


  1. Anderson RS, Jiménez-Moreno G, Carrión J, Pérez-Martinez C (2011) Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1615–1629CrossRefGoogle Scholar
  2. Bar-Matthews M, Ayalon A, Kaufmann A (2000) Timing and hydrological conditions of sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq Cave, Israel. Chem Geol 169:145–156CrossRefGoogle Scholar
  3. Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Schelske CL (1999) Stable isotope (δ15N and δ13C signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221CrossRefGoogle Scholar
  4. Carrión JS (2002) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2047–2066CrossRefGoogle Scholar
  5. Carrión JS, Munuera M, Dupré M, Andrade A (2001) Abrupt vegetation changes in the Segura mountains of southern Spain throughout the Holocene. J Ecol 89:783–797CrossRefGoogle Scholar
  6. Carrión JS, Sánchez-Gómez P, Mota JF, Yll EI, Chaín C (2003) Fire and grazing are contigent on the Holocene vegetation dynamics of Sierra de Gádor, southern Spain. Holocene 13:839–849CrossRefGoogle Scholar
  7. Carrión JS, Fuentes N, González-Sampériz P, Sánchez Quirante L, Finlayson JC, Fernández S, Andrade A (2007) Holocene environmental change in a montane región of sourthern Europe with a long history of human settlement. Quat Sci Rev 26:1455–1475CrossRefGoogle Scholar
  8. Carrión JS, Fernández S, González-Sampériz P, Leroy SAG, Bailey GN, López-Sáez JA, Burjachs F, Gil-Romera G, García-Antón M, Gil-García MJ, Parra I, Santos L, López-García P, Yll EI, Dupré M (2009) Quaternary pollen analysis in the Iberian Peninsula: the value of negative results. Internet Archaeol 25:1–53Google Scholar
  9. Carrión JS, Fernández S, Jiménez-Moreno G, Fauquette S, Gil-Romera G, González-Sampériz P, Finlayson C (2010) The historical origins of aridity and vegetation degradation in southeastern Spain. J Arid Environ 74:731–736CrossRefGoogle Scholar
  10. Castillo Martín A (2009) Lagunas de Sierra Nevada. Editorial Universidad de Granada, GranadaGoogle Scholar
  11. Debret M, Sebag D, Crosta X, Massei N, Petit JR, Chapron E, Bout-Roumazeilles V (2009) Evidence from wavelet analysis for a mid-Holocene transition in global climate forcing. Quat Sci Rev 28:2675–2688CrossRefGoogle Scholar
  12. deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361CrossRefGoogle Scholar
  13. Dormoy I, Peyron O, Combourieu Nebout N, Goring S, Kotthoff U, Magny M, Pross J (2009) Terrestrial climate variability and seasonality changes in the Mediterranean region between 15,000 and 4000 years BP deduced from marine pollen records. Clim Past 5:615–632CrossRefGoogle Scholar
  14. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137CrossRefGoogle Scholar
  15. Ficken KJ, Barber KE, Eglinton G (1998) Lipid biomarker, δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millenia. Org Geochem 28:217–237CrossRefGoogle Scholar
  16. Fletcher W, Zielhofer C (in press) Fragility of Western Mediterranean landscapes during Holocene Rapid Climate Changes. Catena. doi: 10.1016/j.catena.2011.05.001
  17. Fletcher W, Boski T, Moura D (2007) Palynological evidence for environmental and climatic change in the lower Guadiana valley (Portugal) during the last 13,000 years. Holocene 17:479–492CrossRefGoogle Scholar
  18. Fletcher W, Sánchez-Goñi MF, Peyron O, Dormoy I (2010) Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Clim Past 6:245–264CrossRefGoogle Scholar
  19. Fogel ML, Tuross N (1999) Transformation of plant biochemicals to geological macromolecules during early diagénesis. Oecologia 120:336–346CrossRefGoogle Scholar
  20. Galimov EM (1985) The biological fractionation of isotopes. Academic Press, OrlandoGoogle Scholar
  21. Gil-Romera G, Carrión JS, Pausas JG, Sevilla-Callejo M, Lamb HF, Fernández S, Burjachs F (2010) Holocene fire activity and vegetation response in Southeastern Iberia. Quat Sci Rev 29:1082–1092CrossRefGoogle Scholar
  22. Gómez Ortiz A, Schulte L, Salvador Franch F (1996) Contribución al conocimiento de la glaciación reciente y morfología asociada del Corral del Veleta (Sierra Nevada). Cuad Lab Xeol Laxe 21:543–558Google Scholar
  23. Herczeg AL, Smith AK, Dighton JC (2001) A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N, and δ13C in sediments. Appl Geochem 16:73–84CrossRefGoogle Scholar
  24. Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214CrossRefGoogle Scholar
  25. Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quat Int 200:4–18CrossRefGoogle Scholar
  26. Jimenez-Espejo FJ, Martínez-Ruiz F, Rogerson M, González-Donoso JM, Romero OE, Linares D, Sakamoto T, Gallego-Torres D, Rueda Ruiz JL, Ortega-Huertas M, Pérez Claros JA (2008) Detrital input, productivity fluctuations, and watermass circulation in the westernmost Mediterranean Sea since the Last Glacial Maximum. Geochem Geophys Geosyst 9:Q11U02CrossRefGoogle Scholar
  27. Jiménez-Moreno G, Anderson RS (2012) Holocene vegetation and climate change recorded in alpine bog sediments, Sierra Nevada, southern Spain. Quat Res 77:44–53CrossRefGoogle Scholar
  28. Lézine AM, Duplessy JC, Cazet JP (2005) West African monsoon variability during the last deglaciation and the Holocene: evidence from fresh water algae, pollen and isotope data from core KW31, Gulf of Guinea. Palaeogeogr Palaeoclimatol Palaeoecol 219:225–237CrossRefGoogle Scholar
  29. Magny M (2004) Holocene climatic variability as reflected by mid- European lake-level fluctuations, and its probable impact on prehistoric human settlements. Quat Int 113:65–79CrossRefGoogle Scholar
  30. Magny M, Miramont C, Sivan O (2002) Assessment of the impact of climate and anthropogenic factors on Holocene Mediterranean vegetation in Europe on the basis of palaeohydrological records. Palaeogeogr Palaeoclimatol Palaeoecol 186:47–59CrossRefGoogle Scholar
  31. Magri D, Parra I (2002) Late quaternary western Mediterranean pollen records and African winds. Earth Planet Sci Lett 200:401–408CrossRefGoogle Scholar
  32. Martín-Puertas C, Jiménez-Espejo F, Martínez Ruiz F, Nieto-Moreno V, Rodrigo M, Mata MP, Valero-Garcés BL (2010) Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. Clim Past 6:1655–1683CrossRefGoogle Scholar
  33. Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 113:289–302CrossRefGoogle Scholar
  34. Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289CrossRefGoogle Scholar
  35. Meyers PA, Horie S (1993) An organic carbon isotopic record of glacial-postglacial change in atmospheric pCO2 in the sediments of Lake Biwa, Japan. Palaeogeogr Palaeoclimatol Palaeoecol 105:171–178CrossRefGoogle Scholar
  36. Meyers PA, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  37. Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments, vol 2. Kluwer, Dordrecht, pp 239–270CrossRefGoogle Scholar
  38. Morales-Baquero R, Carrillo P, Reche I, Sánchez-Castillo P (1999) Nitrogen–phosphorus relationship in high mountain lakes: effects of the size of catchment basins. Can J Fish Aquat Sci 56:1809–1817CrossRefGoogle Scholar
  39. Morellón M, Valero-Garcés BL, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero O, Engstrom DR, López-Vicente M, Navas A, Soto J (2011) Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol 46:423–452CrossRefGoogle Scholar
  40. Moreno A, López-Merino L, Leira M, Marco-Barba J, González-Sampériz P, Valero-Garcés BL, López-Sáez A, Santos L, Mata P, Ito E (2011) Revealing the last 13,500 years of environmental history from the multiproxy record of a mountain lake (Lago Enol, northern Iberian Peninsula). J Paleolimnol 46:327–349CrossRefGoogle Scholar
  41. Mulitza S, Heslop D, Pittauerova D, Fischer HW, Meyer I, Stuut JB, Zabel M, Mollenhauer G, Collins JA, Kuhnert H, Schulz M (2010) Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature 466:226–228CrossRefGoogle Scholar
  42. O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567CrossRefGoogle Scholar
  43. O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336CrossRefGoogle Scholar
  44. Oliva M, Gómez Ortiz A, Schulte L, Salvador F (2009) Procesos periglaciares actuales en Sierra Nevada. Distribución y morfometría de los lóbulos de solifluxión. Nimbus 23–24:133–148Google Scholar
  45. Ortiz JE, Torres T, Delgado A, Julià R, Lucini M, Llamas FJ, Reyes E, Soler V, Valle M (2004) The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies. Org Geochem 35:1243–1260CrossRefGoogle Scholar
  46. Rodrigo Gámiz M, Martínez Ruiz F, Jiménez Espejo FJ, Gallego Torres D, Nieto Moreno V, Martín Ramos D, Ariztegui D, Romero O (2010) Impact of climate variability in the western Mediterranean during the last 20,000 years: oceanic and atmospheric responses. Quat Sci Rev 15–16:2018–2034Google Scholar
  47. Sadori L, Narcisi B (2001) The post-glacial record of environmental history from Lago di Pergusa (Sicily). Holocene 11:655–671CrossRefGoogle Scholar
  48. Sarmaja-Korjonen K, Seppänen A, Bennike O (2006) Pediastrum algae from the classic late glacial Bølling Sø site, Denmark: response of aquatic biota to climate change. Rev Palaeobot Palynol 138:95–107CrossRefGoogle Scholar
  49. Schulte L (2002) Climatic and human influence on river systems and glacier fluctuations in southeast Spain since the Last Glacial Maximum. Quat Int 93–94:85–100CrossRefGoogle Scholar
  50. Street FA, Grove AT (1979) Global maps of lake-level fluctuations since 30,000 years BO. Quat Res 12:83–118CrossRefGoogle Scholar
  51. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormac FG, Plicht J, Spurk M (1998) INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  52. Talbot MR (2001) Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 401–439Google Scholar
  53. Talbot MR, Laerdal T (2000) The Lake Pleistocene-Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. J Paleolimnol 23:141–164CrossRefGoogle Scholar
  54. Teranes JL, Bernasconi SM (2000) The record of nitrate utilization and productivity limitation provided by d15 N values in lake organic matter—a study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol Oceanogr 45:801–813CrossRefGoogle Scholar
  55. Valero-Garcés BL, Moreno A (2011) Iberian lacustrine sediment records: responses to past and recent global changes in the Mediterranean región. J Paleolimnol 46:319–325CrossRefGoogle Scholar
  56. Valle F (2003) Mapa de Series de Vegetación de Andalucía. Editorial Rueda S.I, MadridGoogle Scholar
  57. Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  58. Wolfe BB, Edwards TWD, Beuning KRM, Elgood RJ (2001) Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 373–400Google Scholar
  59. Zanchetta G, Drysdale RN, Hellstrom JC, Fallick AE, Isola I, Gagan MK, Pareschi MT (2007) Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quat Sci Rev 26:279–286CrossRefGoogle Scholar
  60. Zhornyak LV, Zanchetta G, Drysdale RN, Hellstrom JC, Isola I, Regattieri E, Piccini L, Baneschi I, Couchoud I (2011) Stratigraphic evidence for a “pluvial phase” between 8200–7100 ka from Renella cave (Central Italy). Quat Sci Rev 30:409–417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Antonio García-Alix
    • 1
    Email author
  • Gonzalo Jiménez-Moreno
    • 2
  • R. Scott Anderson
    • 3
  • Francisco J. Jiménez Espejo
    • 1
  • Antonio Delgado Huertas
    • 1
  1. 1.Instituto Andaluz de Ciencias de la Tierra CSIC-UGRGranadaSpain
  2. 2.Departamento de Estratigrafía y PaleontologíaUniversidad de GranadaGranadaSpain
  3. 3.School of Earth Sciences and Environmental SustainabilityNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations