Advertisement

Journal of Paleolimnology

, Volume 46, Issue 3, pp 369–385 | Cite as

Middle and late Holocene climate change and human impact inferred from diatoms, algae and aquatic macrophyte pollen in sediments from Lake Montcortès (NE Iberian Peninsula)

  • Paolo Scussolini
  • Teresa Vegas-Vilarrúbia
  • Valentí Rull
  • Juan Pablo Corella
  • Blas Valero-Garcés
  • Joan Gomà
Original paper

Abstract

During the middle and late Holocene, the Iberian Peninsula underwent large climatic and hydrologic changes, but the temporal resolution and regional distribution of available palaeoenvironmental records is still insufficient for a comprehensive assessment of the regional variability. The high sedimentation rate in karstic, meromictic Montcortès Lake (Catalan pre-Pyrenees) allows for a detailed reconstruction of the regional palaeoecology over the last 5,340 years using diatom analysis, aquatic pollen, sedimentological data, and historic documentary records. Results show marked fluctuations in diatom species assemblage composition, mainly between dominant Cyclotella taxa and small Fragilariales. We suggest that the conspicuous alternation between Cyclotella comta and C. cyclopuncta reflects changes in trophic state, while the succession of centric and pennate species most likely reflects changes in the hydrology of the lake. The diatom assemblages were used to identify six main phases: (1) high productivity and likely lower lake levels before 2350 BC, (2) lower lake levels and a strong arid phase between 2350 and 1850 BC, (3) lake level increase between 1850 and 850 BC, (4) relatively high lake level with fluctuating conditions during the Iberian and Roman Epochs (650 BC–350 AD), (5) lower lake levels, unfavourable conditions for diatom preservation, eutrophication and erosion triggered by increased human activities in the watershed during the Medieval Climate Anomaly (900–1300 AD), and (6) relatively higher lake levels during the LIA (1380–1850 AD) and afterwards. The combined study of diatoms, algae and pollen provides a detailed reconstruction of past climate, which refines understanding of regional environmental variability and interactions between climate and socio-economic conditions in the Pyrenees.

Keywords

Diatoms Meromixis Multi-proxy Palaeoenvironmental reconstruction Pollen Pyrenees 

Notes

Acknowledgments

Financial support for this research was provided by the Spanish Inter-Ministry of Science and Technology (CICYT), through the projects LIMNOCLIBER (REN2003-09130-C02-02), LIMNOCAL (CGL2006-13327-C04-01) and GRACCIE-CONSOLIDER (CSD2007-00067). The Ebro Hydrographic Survey kindly provided updated, present-day limnological data. Two anonymous referees greatly improved a former version of this manuscript.

References

  1. Abrantes F, Gil I, Lopes C, Castro M (2005) Quantitative diatom analyses: a faster cleaning procedure. Deep Sea Res 52:189–198CrossRefGoogle Scholar
  2. Alvarez-Cobelas M, Cirujano S (2007) Multilevel responses of emergent vegetation to environmental factors in a semiarid floodplain. Aquat Bot 87:49–60CrossRefGoogle Scholar
  3. Andreu M (1981) La financiación de la industria naval en Barcelona (1745–1760). Pedralbes: Revista d’historia Moderna 1:267–294Google Scholar
  4. Anneville O, Ginot V, Angeli N (2002) Restoration of Lake Geneva: expected versus observed responses of phytoplankton to decreases in phosphorus. Lakes Reservoirs Res Manage 7:67–80CrossRefGoogle Scholar
  5. Barriendos M, Martín-Vide J (1998) Secular climatic oscillations as indicated by catastrophic floods in the Spanish mediterranean coastal area (14th–19th centuries). Clim Change 38:473–491CrossRefGoogle Scholar
  6. Battarbee RW, Jones V, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer, Dordrecht, pp 155–202Google Scholar
  7. Benito G, Díez-Herrero A, Fernández de Villalta M (2003) Magnitude and frequency of flooding in the Tagus Basin (Central Spain) over the last millennium. Clim Change 58:171–192CrossRefGoogle Scholar
  8. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  9. Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Kluwer, Dordrecht, pp 5–32Google Scholar
  10. Bosch J, Santacana J (2009) Blat, metalls cabdills. Rafael Dalmau editor, BarcelonaGoogle Scholar
  11. Burley KL, Prepas EE, Chambers PA (2001) Phosphorus release from sediments in hardwater eutrophic lakes: the effect of redox-sensitive and insensitive chemical treatments. Freshwater Biol 46:1061–1074CrossRefGoogle Scholar
  12. Cacho I, Valero Garcés B, González Sampériz P (2010) Revisión de las reconstrucciones palaeoclimáticas en la península ibérica desde el último periodo glacial. In: Pérez FF, Boscolo R (eds) Clima en España: pasado, presente y futuro. Informe de evaluación del cambio climático regional. Paleoclimate, CLIVAR-SpainGoogle Scholar
  13. Camps J, Gonzalvo I, Güell J, López P, Tejero A, Toldrá J, Vallespinós F, Vicens M (1976) El lago de Montcortès, descripción de un ciclo anual. Oecología Aquatica 2:99–110Google Scholar
  14. Carrión JS, Willis KJ, Sánchez-Gómez P (2004) Holocene forest history of eastern plateaux in the Segura Mountains (Murcia, southeastern Spain). Rev Palaeobot Palynol 132:219–236CrossRefGoogle Scholar
  15. Carrión JS, Fuentes N, González-Sampériz P, Sánchez-Quirante L, Finlayson JC, Fernández S, Andrade A (2007) Holocene environmental change in a montane region of southern Europe with a long history of human settlement. Quat Sci Rev 26:1455–1475CrossRefGoogle Scholar
  16. Chiang C, Craft CB, Rogers DW, Richardson CJ (2000) Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities. Aquat Bot 68:61–78CrossRefGoogle Scholar
  17. Chueca Cía J, Julián Andrés A, Saz Sánchez MA, Creus Novauc J, López-Moreno JI (2005) Responses to climatic changes since the Little Ice Age on Maladeta Glacier (Central Pyrenees). Geomorphology 68:167–182CrossRefGoogle Scholar
  18. Cooper SR (1995) Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecol Appl 5:703–723CrossRefGoogle Scholar
  19. Corella LP, Valero Garcés BL, Moreno A, Morellón M, Rull V, Giralt S, Rico Maceres T, Pérez-Sanz A (2010) Climate and human impact on a meromictic lake during the last 6,000 years (Montcorte`s Lake, Central Pyrenees, Spain). J Paleolimnol, (this volume). doi: 10.1007/s10933-010-9443-3
  20. Còts P (2005) Els pobles de la Prehistòra i l’Antiguitat. In: Maguran CM, Rapalino V (eds) Història del Pallars. Dels orígens als nostres dies. Col·lecció Pallars. Arxiu Històric Comarcal de Sort. Sort i Pagès editors, LleidaGoogle Scholar
  21. Cullen H, deMenocal P, Hemming SR, Brown FH, Guilderson TP, Sirocko F (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology 28:379–382CrossRefGoogle Scholar
  22. de Bonneville F (1994) The book of fine linen. Flammarion, ParisGoogle Scholar
  23. Delgado JM (1994) La indústria de la construcció naval catalana (1750–1850). Drassana 2:34–39Google Scholar
  24. deMenocal P, Ortiz J, Guilderson TP, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19:347–361CrossRefGoogle Scholar
  25. Dragoni W (1998) Some consideration on climate changes, water resources and water needs in the Italian region south of 43°N. In: Issar N, Brown N (eds) Water, environment and society in times of climate change. Kluwer, DordrechtGoogle Scholar
  26. Farràs F (2005) El Pallars contemporani. In: Marugan CM, Rapalino V (eds) Història del Pallars. Dels orìgens als nostre dies. Pagès Editors, Lleida, pp 121–144Google Scholar
  27. Finkelstein SA, Gajewski K (2007) A palaeolimnological record of diatom-community dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. Holocene 17:803–812CrossRefGoogle Scholar
  28. Flower R (1993) Diatom preservation: experiments and observations on dissolution and breakage in modern and fossil material. Hydrobiologia 269–270:473–484CrossRefGoogle Scholar
  29. Hakala A (2004) Meromixis as part of lake evolution-observations and revised classification of true meromictic lakes in Finland. Boreal Environ Res 9:37–53Google Scholar
  30. Harrison SP, Digerfeldt G (1993) European lakes as palaeohydrological and palaeoclimatic indicators. Quat Sci Rev 12:233–248CrossRefGoogle Scholar
  31. Krammer K (1997) Die cymbelloiden Diatomeen. Bibliotheca Diatomologica, vol 37. Verlag J. Cramer, BerlinGoogle Scholar
  32. Krammer K, Lange-Bertalot H (1986–2004) Süßwasserflora von Mitteleuropa. Bacillariophyceae. 1.Teil (1986, G. Fischer, Stuttgart and Jena), 2.Teil (1988, G. Fischer, Stuttgart and Jena), 3.Teil (2004, G. Fischer, Stuttgart and New York), 4.Teil (1991, G. Fischer, Stuttgart and New York), 3.Teil ed.2 (2000, Spektrum, Heidelberg and Berlin)Google Scholar
  33. Lamb HF, Gasse F, Benkaddour A, El Homauti N, van der Kaars S, Perkins WT, Pearce NJ, Roberts CN (1995) Relation between century-scale Holocene arid intervals in tropical and temperature zones. Nature 373:134–137CrossRefGoogle Scholar
  34. Lange-Bertalot H (1980) Zur systematischen Berwertung der bandförmigen Kolonien bei Navicula und Fragilaria. Nova Hedwigia 33:723–756Google Scholar
  35. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  36. Macklin MG, Benito G, Gregor KJ, Johnstone E, Lewin J, Michczynska DJ, Soja R, Starkel L, Thorndycraft VR (2006) Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66:145–154CrossRefGoogle Scholar
  37. Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on pre-historic human settlements. Quat Int 113:65–79CrossRefGoogle Scholar
  38. Magny M, Gauthier E, Vanniere B, Peyron O (2008) Palaeohydrological changes and human-impact history over the last millennium recorded at Lake Joux in the Jura Mountains, Switzerland. Holocene 18:255–265CrossRefGoogle Scholar
  39. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820CrossRefGoogle Scholar
  40. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindel Dl, Ammann C, Faluveg Gi, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  41. Martín-Puertas C, Valero-Garcés BL, Mata P, González-Sampériz P, Bao R, Moreno A, Stefanova V (2008) Arid and humid phases in Southern Spain during the last 4000 Years: the Zoñar Lake Record, Córdoba. Holocene 18:907–921CrossRefGoogle Scholar
  42. Martín-Puertas C, Valero-Garcés BL, Brauer A, Mata MP, Delgado-Huertas A, Dulski P (2009) The Iberian-Roman Humid period (2600–1600 cal yr BP) in the Zoñar Lake varve record (Andalucía, southern Spain). Quat Res 71:108–120CrossRefGoogle Scholar
  43. Marugan CM, Oliver J (2005) El Pallars medieval. In: Marguan CM (ed) Història del Pallars Dels orígens als nostre dies. Pagès Editors, LleidaGoogle Scholar
  44. Mayewski PA et al (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  45. Modamio X, Pérez V, Samarra F (1988) Limnología del lago de Montcortès (ciclo 1978–1979). Oecolog Aquat 9:9–17Google Scholar
  46. Morellón M, Valero-Garcés B, Moreno A, González-Sampériz P, Mata P, Romero O, Maestro M, Navas A (2008) Holocene palaeohydrology and climate variability in northeastern Spain: the sedimentary record of Lake Estanya (Pre-Pyrenean range). Quat Int 181:15–31CrossRefGoogle Scholar
  47. Morellón M, Valero-Garcés B, González-Sampériz P, Vegas-Vilarrúbia T, Rubio E, Rieradevall M, Delgado-Huertas A, Mata P, Romero O, Engstrom DR, López-Vicente M, Navas A, Soto J (2009a) Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. J Paleolimnol 1–30. doi: 10.1007/s10933-009-9346-3
  48. Morellón M, Valero-Garcés B, Vegas-Vilarrúbia T, González-Sampériz P, Romero O, Delgado-Huertas A, Mata P, Moreno A, Rico M, Juan Pablo Corella JP (2009b) Lateglacial and Holocene palaeohydrology in the western Mediterranean region: the Lake Estanya record (NE Spain). Quat Sci Rev 28:2582–2599CrossRefGoogle Scholar
  49. Moreno A, Valero-Garcés BL, González-Sampériz P, Rico M (2008) Flood response to rainfall -variability during the last 2000 years inferred from the Taravilla Lake record (Central Iberian Range, Spain). J Paleolimnol 40:943–961CrossRefGoogle Scholar
  50. Nürnberg GK (1994) Phosphorus release from anoxic sediments: what we know and how we can deal with it. Limnetica 10:1–4Google Scholar
  51. Padisák J, Dokulil M (1994) Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia 289:23–42CrossRefGoogle Scholar
  52. Padisák J, Tóth L-G, Rajczy M (1990) Stir-up effect of wind on a more-or-less stratified shallow lake phytoplankton community, Lake Balaton, Hungary. Hydrobiologia 191:249–254CrossRefGoogle Scholar
  53. Padisák J, Borics G, Fehér G, Grigorszky I, Oldal I, Schmidt A, Zámbóné-Doma Z (2003) Dominant species, functional assemblages and frequency of equilibriumphases in late summer phytoplankton assemblages in Hungarian smallshallow lakes. Hydrobiologia 502:157–168CrossRefGoogle Scholar
  54. Penn MR, Auer MT, Doerr SM, Driscoll CT, Brooks CM, Effler SW (2000) Seasonality in phosphorus release from sediments of a hypereutrophic lake under a matrix of pH and redox conditions. Can J Fish Aquat Sci 57:1033–1041CrossRefGoogle Scholar
  55. Petticrew EL, Arocena JM (2001) Evaluation of iron-phosphate as a source of internal lake phosphorus loadings. Sci Total Environ 266:87–93CrossRefGoogle Scholar
  56. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dynam 24:263–278CrossRefGoogle Scholar
  57. Reale O, Dirmeyer P (2000) Modeling the effects of vegetation on Mediterranean climate during the roman classical period part I: climate history and model sensitivity. Global Planet Change 25:163–184CrossRefGoogle Scholar
  58. Reed JM, Cvetkoska A, Levkov Z, Vogel H, Wagner B (2010) The last glacial-interglacial cycle in Lake Ohrid (Macedonia/Albania): testing diatom response to climate. Biogeosciences 7:3083–3094CrossRefGoogle Scholar
  59. Riera S, López-Sáez JA, Julià R (2006) Lake responses to historical land use changes in northern Spain: the contribution of non-pollen palynomorphs in a multiproxy study. Rev Palaeobot Palynol 141:127–137CrossRefGoogle Scholar
  60. Rosell J (1994) Mapa Geológico de España y Memoria. Escala 1:50.000, Hoja de Tremp (252). Instituto Tecnológico Geominero de España (IGME), MadridGoogle Scholar
  61. Round FE, Crawford RM, Mann DG (1990) The diatoms. Biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  62. Rull V, González-Sampériz P, Corella JP, Morellón M, Giralt S (2010) Vegetation changes in the southern Pyrenean flank during the last millennium in relation to climate and human activities: the Montcortès lacustrine record. J Paleolimnol, (this volume). doi: 10.1007/s10933-010-9444-2
  63. Ryves DB, Juggins S, Fritz SC, Battarbee RW (2001) Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr Palaeoc l172:99–113CrossRefGoogle Scholar
  64. Sadori L, Giraudi C, Petitti P, Ramrath A (2004) Human impact at Lago di Mezzano (central Italy) during the Bronze age: a multidisciplinary approach. Quat Int 113:5–17CrossRefGoogle Scholar
  65. Saz MA (2003) Temperaturas y precipitaciones en la mitad norte de España desde el siglo XV. Consejo de Protección de la Naturaleza de Aragón, ZaragozaGoogle Scholar
  66. Schmidt R, Kamenik C, Lange-Bertalot H, Klee R (2004) Fragilaria and Staurosira (Bacillaryophyceae) from sediment surfaces of 40 lakes in Austrian Alps in relation to environmental variables, and their potential for paleoclimatology. J Limnol 63:171–189Google Scholar
  67. Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for Medieval hydroclimate. Quat Sci Rev 26:2322–2336CrossRefGoogle Scholar
  68. Smol JP, Cumming BF (2000) Tracking long-term changes in climate using algal indicators in lake sediments. J Phycol 36:986–1011CrossRefGoogle Scholar
  69. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (Versión 4.5). Microcomputer Power, Ithaca, New YorkGoogle Scholar
  70. Tolotti M, Corradini F, Boscaini A, Calliari D (2007) Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578:147–156CrossRefGoogle Scholar
  71. Valero-Garcés BL (2008) The Taravilla Lake and Tuga deposits (central Iberian Range, Spain) as paleohydrological and paleoclimatic indicators. Palaeogeogr Palaeocl 259(2–3):136–156CrossRefGoogle Scholar
  72. Valero-Garcés BL, González-Sampériz P, Navas A, Machín J, Mata P, Delgado-Huertas A, Bao R, Moreno A, Carrión JS, Schwalb A, González-Barrios A (2006) Human impact since Medieval times and recent ecological restoration in a Mediterranean lake: the laguna Zoñar (Spain). J Paleolimnol 35:24–49CrossRefGoogle Scholar
  73. van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth J Aquatic Ecol 28:117–133CrossRefGoogle Scholar
  74. van der Werf HMG (2004) Life Cycle Analysis of field production of fibre hemp, the effect of production practices on environmental impacts. Euphytica 140:13–23CrossRefGoogle Scholar
  75. Vicente-Serrano S, Cuadrat JM (2007) North Atlantic Oscillation control of droughts in north-east Spain: evaluation since 1600 A.D. Clim Change 85:357–379CrossRefGoogle Scholar
  76. Welch EB, Cooke GD (1995) Internal phosphorus loading in shallow lakes: importance and control. Lake Reserv Manage 11:273–281CrossRefGoogle Scholar
  77. Wilson GP, Reed JM, Lawson IT, Frogley MR, Preece RC, Tzedakis PC (2008) Diatom response to the Last Glacial–Interglacial Transition in the Ioannina basin, northwest Greece: implications for Mediterranean palaeoclimate reconstruction. Quat Sci Rev 27:428–440CrossRefGoogle Scholar
  78. Wolfe A (2003) Diatom community responses to late-Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. Holocene 13:29–37Google Scholar
  79. Wunsam S, Schmidt R, Klee R (1995) Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquat Sci 57:360–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Paolo Scussolini
    • 1
    • 2
  • Teresa Vegas-Vilarrúbia
    • 1
  • Valentí Rull
    • 3
  • Juan Pablo Corella
    • 4
  • Blas Valero-Garcés
    • 4
  • Joan Gomà
    • 1
  1. 1.Faculty of Biology, Department of EcologyUniversitat de BarcelonaBarcelonaSpain
  2. 2.Faculty of Earth and Life Sciences, Department of Marine BiogeologyVrije UniversiteitAmsterdamThe Netherlands
  3. 3.Institut Botànic de Barcelona (CSIC-ICUB)BarcelonaSpain
  4. 4.Instituto Pirenaico de Ecología (CSIC-IPE)ZaragozaSpain

Personalised recommendations