Skip to main content

Advertisement

Log in

Sedimentary stable carbon isotope evidence of late Quaternary vegetation and climate change in highland Costa Rica

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Continuous terrestrial records of paleoclimate and paleovegetation that extend to the late Pleistocene are rare for the circum-Caribbean uplands. In this study we analyzed the bulk and compound-specific carbon isotope composition of lake sediments spanning this period from Lago de las Morrenas 1 (LM1), a glacial lake in the highlands of southern Costa Rica, for evidence of climate and vegetation changes that may not have been apparent in previous analyses. The stable carbon isotope ratios of n-alkanes typically derived from terrestrial plants (δ13CC27–C33) indicate an increased abundance of C4 plant taxa during the late Pleistocene and earliest Holocene that may be related to decreased atmospheric carbon dioxide concentrations, increased aridity, or habitat availability. These n-alkane isotope ratios also provide evidence of more arid conditions during the early and late Holocene, and more mesic conditions during the middle Holocene, a pattern prevalent in other paleoclimate records from the region that is thought to be related to millennial-scale dynamics of the intertropical convergence zone (ITCZ). The sensitivity of the LM1 paleorecord to trade wind dynamics provides further support for the role of millennial-scale shifts in ITCZ dynamics in driving neotropical environmental change, and indicates that the effects of ITCZ migration were not limited to the lowlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bender M (1971) Variations on the 13C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:1239–1244

    Article  Google Scholar 

  • Bender M, Rouhani I, Vines HM, Black CC (1973) 13C/12C ratio changes in crassulacean acid metabolism plants. Plant Physiol 52:427–430

    Article  Google Scholar 

  • Boom A, Mora G, Cleef AM, Hooghiemstra H (2001) High altitude C-4 grasslands in the northern Andes: relicts from glacial conditions? Rev Palaeobot Palynology 115:147–160

    Article  Google Scholar 

  • Bray EE, Evans ED (1961) Distribution of n-paraffin as a clue to recognition of source beds. Geochim Cosmochim Acta 22:2–15

    Article  Google Scholar 

  • Bull ID, Simpson IA, Dockrill SJ, Evershed RP (1999) Organic geochemical evidence for the origin of ancient anthropogenic soil deposits at Tofts Ness, Sanday, Orkney. Org Geochem 30:535–556

    Article  Google Scholar 

  • Chaverri A, Cleef AM (2005) Comunidades vegetales de los páramos de los macizos de Chirripó y Buenavista, Costa Rica. In: Kappelle M, Horn SP (eds) Páramos de Costa Rica. Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, pp 577–592

    Google Scholar 

  • Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C-4 grasses: present, past, and future. Oecologia 114:441–454

    Article  Google Scholar 

  • Collister JW, Rieley G, Stern B, Eglinton G, Fry B (1994) Compound specific 13C analyses of leaf lipids from plants with differing carbon dioxide metabolism. Org Geochem 21:619–628

    Article  Google Scholar 

  • Cranwell PA, Eglinton G, Robinson N (1987) Lipids of aquatic organisms as potential contributors to lacustrine sediments. 2. Org Geochem 11:513–527

    Article  Google Scholar 

  • Cruz FW, Vuille M, Burns SJ, Wang XF, Cheng H, Werner M, Edwards RL, Karmann I, Auler AS, Nguyen H (2009) Orbitally driven east-west antiphasing of South American precipitation. Nat Geosci 2:210–214

    Article  Google Scholar 

  • Dohrenwend RE (1972) The energetic role of the trade wind inversion in a tropical alpine ecosystem. Ph.D. Dissertation, Syracuse University, Syracuse

  • Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chemical plant taxonomy. Academic Press, New York, pp 187–217

    Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1334

    Article  Google Scholar 

  • Ehleringer JR, Hall AE, Farquhar GD (1993) Stable isotopes and plant carbon/water relations. Academic Press, San Diego

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C-4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Article  Google Scholar 

  • Elias VO, Simoneit BRT, Cardoso JN (1997) Even n-alkane predominances on the Amazon Shelf and a Northeast Pacific hydrothermal system. Naturwissenschaften 84:415–420

    Article  Google Scholar 

  • Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes. Aust J Plant Physiol 11:539–552

    Article  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  Google Scholar 

  • Ficken KJ, Street-Perrott FA, Perrott RA, Swain DL, Olago DO, Eglinton G (1998) Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa. Org Geochem 29:1701–1719

    Article  Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  Google Scholar 

  • Ficken KJ, Wooller MJ, Swain DL, Street-Perrott FA, Eglinton G (2002) Reconstruction of a subalpine grass-dominated ecosystem, Lake Rutundu, Mount Kenya: a novel multi-proxy approach. Paleogeogr Paleoclimatol Paleoecol 177:137–149

    Article  Google Scholar 

  • Fisher E, Oldfield F, Wake R, Boyle J, Appleby P, Wolff GA (2003) Molecular marker records of land use change. Org Geochem 34:105–119

    Article  Google Scholar 

  • Friedli H, Lotscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238

    Article  Google Scholar 

  • Glaser B (2005) Compound-specific stable-isotope (delta C-13) analysis in soil science. J Plant Nutr Soil Sci Z Pflanzenernahrung Bodenkunde 168:633–648

    Article  Google Scholar 

  • Haberyan KA, Horn SP (1999) A 10, 000 year diatom record from a glacial lake in Costa Rica. Mt Res Dev 19:63–68

    Article  Google Scholar 

  • Haberyan KA, Horn SP, Cumming BF (1997) Diatom assemblages from Costa Rican lakes: an initial ecological assessment. J Paleolimnol 17:263–274

    Article  Google Scholar 

  • Han JEM, Van Hoeven W, Calvin M, Bradley W (1968) Organic geochemical studies, ii. A preliminary report on the distribution of aliphatic hydrocarbons in algae, in bacteria and in a recent lake sediment. Proc Natl Acad Sci USA 59:29–33

    Article  Google Scholar 

  • Hastenrath S (1991) Climate dynamics of the tropics. Kluwer, Netherlands

  • Haug GH, Hughen KA, Sigman DM, Peterson LC, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293:1304–1308

    Article  Google Scholar 

  • Hodell DA, Curtis JH, Jones GA, Higuera-Gundy A, Brenner M, Binford MW, Dorsey KT (1991) Reconstruction of Caribbean climate change over the past 10, 500 years. Nature 352:790–793

    Article  Google Scholar 

  • Hooghiemstra H, Cleef A, Noldus GW, Kappelle M (1992) Upper Quaternary vegetation dynamics and palaeoclimatology of the La Chonta bog area (Cordillera de Talamanca, Costa Rica). J Quat Sci 7:205–225

    Article  Google Scholar 

  • Horn SP (1989) Postfire vegetation development in the Costa Rican páramos. Madroño 36:93–114

    Google Scholar 

  • Horn SP (1993) Postglacial vegetation and fire history in the Chirripó páramo of Costa Rica. Quat Res 40:107–116

    Article  Google Scholar 

  • Horn SP, Orvis KH, Haberyan KA (2005) Limnología de las lagunas glaciales en el páramo del Chirripó, Costa Rica. In: Kappelle M, Horn SP (eds) Páramos de Costa Rica. Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, pp 161–181

    Google Scholar 

  • Huang YS, Street-Perrott FA, Perrot RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific delta C-13 analyses of sediments from Sacred Lake, Mt. Kenya. Geochim Cosmochim Acta 63:1383–1404

    Article  Google Scholar 

  • Huang Y, Street-Perrott FA, Metcalfe SE, Brenner M, Moreland M, Freeman KH (2001) Climate change as the dominant control on glacial-interglacial variations in C-3 and C-4 plant abundance. Science 293:1647–1651

    Article  Google Scholar 

  • Indermuhle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  • Islebe GA, Hooghiemstra H (1997) Vegetation and climate history of montane Costa Rica since the last glacial. Quat Sci Rev 16:589–604

    Article  Google Scholar 

  • Kappelle M (1991) Distribución altitudinal de la vegetación del Parque Nacional Chirripó, Costa Rica. Brenesia 36:1–14

    Google Scholar 

  • Kappelle M, Horn SP (2005) Páramos de Costa Rica. INBio, Santo Domingo de Heredia, Costa Rica

    Google Scholar 

  • Kappelle M, Castro M, Garita A, González L, Monge H (2005) Ecosistemas de los páramos del área de Conservación Amistad-Pacífico en Costa Rica. In: Kappelle M, Horn SP (eds) Páramos de Costa Rica. Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, pp 549–575

    Google Scholar 

  • Keeley JE (1989) Stable carbon isotopes in vernal pool aquatics of differing photosynthetic pathways. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable Isotopes in ecological research. Springer, New York, pp 76–81

    Google Scholar 

  • Korner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40

    Article  Google Scholar 

  • League BL, Horn SP (2000) A 10 000 year record of páramo fires in Costa Rica. J Trop Ecol 16:747–752

    Article  Google Scholar 

  • Leffler AJ, Enquist BJ (2002) Carbon isotope composition of tree leaves from dry tropical forests of Guanacaste, Costa Rica: comparison across tropical ecosystems and tree life history. J Trop Ecol 18:151–159

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Miller JM, Williams RJ, Farquhar GD (2001) Carbon isotope discrimination by a sequence of Eucalyptus species along a subcontinental rainfall gradient in Australia. Funct Ecol 15:222–232

    Article  Google Scholar 

  • Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM (2001) Atmospheric CO2 concentrations over the Last Glacial Termination. Science 291:112–114

    Article  Google Scholar 

  • Nishimura M, Baker EW (1986) Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediments. Geochim Cosmochim Acta 50:299–305

    Article  Google Scholar 

  • Nyberg J, Kuijpers A, Malmgren BA, Kunzendorf H (2001) Late Holocene changes in precipitation and hydrography recorded in marine sediments from the northeastern Caribbean Sea. Quat Res 56:87–102

    Article  Google Scholar 

  • O’Leary MH (1981) Carbon isotope fractionation in plants. Phytochemistry 20:553–567

    Article  Google Scholar 

  • Orvis KH, Horn SP (2000) Quaternary glaciers and climate on Cerro Chirripó, Costa Rica. Quat Res 54:24–37

    Article  Google Scholar 

  • Peterson LC, Haug GH (2006) Variability in the mean latitude of the Atlantic Intertropical Convergence Zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Paleogeogr Paleoclimatol Paleoecol 234:97–113

    Article  Google Scholar 

  • Pohl RW (1980) Family #15. Gramineae. Field museum of natural history, Chicago, p 608

    Google Scholar 

  • Read JJ, Johnson DA, Asay KH, Tieszen L (1992) Carbon isotope discrimination: relationship to yield, gas exchange and water-use efficiency in field grown Crested Wheatgrass. Crop Sci 32:168–175

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Rull V, Abbott MB, Polissar PJ, Wolfe AP, Bezada M, Bradley RS (2005) 15, 000-yr pollen record of vegetation change in the high altitude tropical Andes at Laguna Verde Alta, Venezuela. Quat Res 64:308–317

    Article  Google Scholar 

  • Sage RF, Li M, Monson RK (1999a) The taxonomic distribution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 551–584

    Chapter  Google Scholar 

  • Sage RF, Wedin DA, Li M (1999b) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 313–373

    Chapter  Google Scholar 

  • Sandquist DR, Keeley JE (1990) Carbon uptake characteristics in two high elevation populations of the aquatic CAM plant Isoetes bolanderi (Isoetacae). Am J Bot 77:682–688

    Article  Google Scholar 

  • Schefuss E, Ratmeyer V, Stuut JBW, Jansen JHF, Damste JSS (2003) Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic. Geochim Cosmochim Acta 67:1757–1767

    Article  Google Scholar 

  • Schwarz AG, Redmann RE (1988) C4 grasses from the boreal forest region of northwestern Canada. Can J Bot 66:2424–2430

    Article  Google Scholar 

  • Smith FA, Walker NA (1980) Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotope discrimination. New Phyt 86:245–259

    Article  Google Scholar 

  • Song M, Duan D, Chen H, Hu Q, Zhang F, Xu X, Tian Y, Ouyang H, Peng C (2008) Leaf δ13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau. Ecography 31:499–508

    Article  Google Scholar 

  • Stadtmuller T (1987) Cloud forests in the humid tropics. United Nations University Press, Costa Rica

    Google Scholar 

  • Stevenson BA, Kelly EF, McDonald EV, Busacca AJ (2005) The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124:37–47

    Article  Google Scholar 

  • Stewart GR, Turnbull J, Schmidt S, Erskine PD (1995) 13C natural abundance in plant communities along a rainfall gradient: A biological integrator of rainfall availability. Funct Plant Biol 22:51–55

    Google Scholar 

  • Street-Perrott FA, Huang YS, Perrott RA, Eglinton G, Barker P, Ben Khelifa L, Harkness DD, Olago DO (1997) Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science 278:1422–1426

    Article  Google Scholar 

  • Stuiver M, Reimer PJ (1993) Extended 14C database and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Telford RJ, Heegaard E, Birks HJB (2004) The intercept is a poor estimate of a calibrated radiocarbon age. Holocene 14:296–298

    Article  Google Scholar 

  • van der Merwe NJ, Medina E (1991) The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J Archaeol Sci 18:249–259

    Article  Google Scholar 

  • Vargas G, Sánchez JJ (2005) Plantas con flores de los páramos de Costa Rica y Panamá: el páramo ístmico. In: Kappelle M, Horn SP (eds) páramos de Costa Rica. Instituto Nacional de Biodiversidad, Santo Domingo de Heredia, pp 397–435

    Google Scholar 

  • Vélez MI, Hooghiemstra H, Metcalfe S, Will M, Berrío JC (2006) Late Glacial and Holocene environmental and climatic changes from a limnological transect through Colombia, northern South America. Paleogeogr Paleoclimatol Paleoecol 234:81–96

    Article  Google Scholar 

  • Wright HE, Mann DH, Glaser PH (1984) Piston corers for peat and lake sediments. Ecology 65:657–659

    Article  Google Scholar 

  • Yancheva G, Nowaczyk N, Mingram J, Dulski P, Schettler G, Negendank J, Liu J, Sigman DM, Peterson LC, Haug GH (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature 445:74–77

    Article  Google Scholar 

Download references

Acknowledgments

Laboratory analyses and field work were supported by the Global Environmental Change Research Group at the University of Tennessee and grants to S. Horn from the National Geographic Society and The A.W. Mellon Foundation. Isotopic analyses were supported by NSF grant EAR-0004104 to C. Mora. Radiocarbon dates were provided by the NSF-Arizona AMS Laboratory through their program of student research support. During portions of this research, C. Lane was supported by Hilton-Smith and Yates Dissertation Fellowships from the University of Tennessee, and by NSF grant BCS-0550382. Katie Milam, an undergraduate research assistant on the project, was supported by NSF grant BCS-0550382 and a Future Faculty Grant to C. Lane from the Academic Keys Foundation. We thank the Costa Rican Ministry of Environment and Energy and the La Amistad-Pacifico Conservation Area for allowing us to conduct research in Chirripó National Park, and Maureen Sanchéz, José Luis Garrita, and Daniel Lewis for field assistance. We also thank Zheng-Hua Li and Maria Uhle for assistance with isotope analyses, and A. Schimmelmann for providing standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad S. Lane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, C.S., Horn, S.P., Mora, C.I. et al. Sedimentary stable carbon isotope evidence of late Quaternary vegetation and climate change in highland Costa Rica. J Paleolimnol 45, 323–338 (2011). https://doi.org/10.1007/s10933-011-9500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-011-9500-6

Keywords

Navigation