Use of fine-scale stratigraphy and chemostratigraphy to evaluate conditions of deposition and preservation of a Triassic Lagerstätte, south-central Virginia

Abstract

The rich, fossiliferous Triassic sediments exposed in the Virginia Solite Quarry include a 34-mm-thick “insect layer” that is notable for detailed preservation of soft-bodied invertebrate and vertebrate remains. We describe this unique Konservat-Lagerstätte and use sedimentologic and geochemical analyses to interpret the environmental conditions necessary to preserve such delicate fossils. This work is among the first attempts to apply detailed geochemical/stratigraphic analysis to the study of Lagerstätten and we report on a 332-mm-thick section that includes the insect layer and the rocks immediately below and above it. Our analysis successfully constrains various aspects of the depositional and diagenetic history of the Lagerstätte and permits a detailed analysis of changing conditions prior to, during, and after deposition. Geochemical and sedimentologic analyses of the insect layer and surrounding lithologies reveal a change from siliciclastic-dominated layers (Unit 1) to dolomite-siliciclastic laminites above (Unit 2 and the insect layer), separated by a boundary dolostone layer that is traceable for over 200 m. We interpret this sedimentary shift as the initial stages in the transgression of a shallow, saline, alkaline rift-basin lake over lake margin deposits. The absence of bioturbation by plants and benthic organisms, as well as a lack of predation on the insects, is not explained by significant water depth, but is instead more reasonably considered a result of the chemistry of the water at the lake margin, affected by groundwater seeps, which provided F-, Mg-, and Ca-rich fluids. Although the initial conditions of preservation are remarkable, it is equally impressive that the fossils survived extensive diagenesis, e.g. dissolution of quartz and coarsening of dolomite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ackermann RV, Schlische RW, Patiño LC, Johnson LA (2003) A Lagerstätte of rift-related tectonic structures from the Solite Quarry, Dan River/Danville rift basin. In: LeTourneau PM, Olsen PE (eds) The Great Rift Valleys of Pangea. Columbia University Press, New York, pp 118–133

    Google Scholar 

  2. Algeo TJ, Maynard JB (2004) Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol 206:289–318

    Article  Google Scholar 

  3. Anderson J, Anderson H, Fatti P, Sichel H (1996) The Triassic explosion (?): a statistical model for extrapolating biodiversity based on the terrestrial Molteno formation. Paleobiology 22:318–328

    Google Scholar 

  4. Ashley GM, Mworia JM, Muasya AM, Owens RB, Driese SG, Hover VC, Renaut RW, Goman MF, Mathai S, Blatt SH (2004) Sedimentation and recent history of a freshwater wetland in a semi-arid environment: Loboi Swamp, Kenya, East Africa. Sedimentology 51:1201–1321

    Article  Google Scholar 

  5. Ayers JC, Zhang L (2005) Zircon aqueous solubility and partitioning systematics. Goldschmidt conference abstracts, Moscow, vol 15, p A5

  6. Barrat JA, Boulègue J, Tiercelin J-J, Lesourd M (2000) Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa. Geochim Cosmochim Acta 64:287–298

    Article  Google Scholar 

  7. Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368

    Article  Google Scholar 

  8. Bethke CM (2005) The Geochemists Workbench®, version 6.0, GWB essentials guide. Hydrogeology Program, University of Illinois, Urbana, 76 pp

  9. Blagoderov V, Grimaldi DA, Fraser NC (2007) How time flies for flies: diverse Diptera from the Triassic of Virginia and early radiation of the order. Am Mus Novit 3572:1–39

    Article  Google Scholar 

  10. Buatois LA, Mangano MG (2008) Applications of ichnology in lacustrine sequence stratigraphy: potential and limitations. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/j.palaeo.2008.10.012

  11. Calvert SE, Bustin RM, Ingall ED (1996) Influence of water column anoxia and sediment supply on the burial and preservation of organic carbon in marine shales. Geochim Cosmochim Acta 60:1577–1593

    Article  Google Scholar 

  12. Calvo JP, McKenzie JA, Vasconcelos C (2003) Microbially-mediated lacustrine dolomite formation: evidence and current research trends. In: Valero-Garcés BL (ed) Limnogeology in Spain: a tribute to Kerry Kelts. Consejo Superior de Investigaciones Cientificas, Madrid, pp 229–251

    Google Scholar 

  13. Carroll AR, Bohacs KM (1999) Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology 27:99–102

    Article  Google Scholar 

  14. Cohen AS, Thouin C (1987) Nearshore carbonate deposits of Lake Tanganyika. Geology 15:414–418

    Article  Google Scholar 

  15. Collinson JD, Thompson DB (1982) Sedimentary structures. George Allen and Unwin, London

    Google Scholar 

  16. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37

    Article  Google Scholar 

  17. Coshell L, Rosen MR (1994) Stratigraphy and Holocene history of Lake Hayward, Swan Coastal Plain wetlands, western Australia. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient Saline Lakes. Special publication 50. SEPM, Tulsa, pp 173–188

  18. de Wet CB, Mora CI, Gore PJW, Gierlowski-Kordesch E, Cucolo SJ (2002) Deposition and geochemistry of lacustrine and spring carbonates in Mesozoic rift basins, eastern North America. In: Renaut RW, Ashley GM (eds) Sedimentation in continental rifts. Special publication 73. SEPM, Tulsa, pp 309–325

  19. DeDeckker P (1988) Biological and sedimentary facies of Australian salt lakes. Palaeogeogr Palaeoclimatol Palaeoecol 62:237–270

    Article  Google Scholar 

  20. DeDeckker P, Last WM (1989) Modern, non-marine dolomite in evaporitic playas of western Victoria, Australia. Sediment Geol 64:223–238

    Article  Google Scholar 

  21. Demicco RV, Hardie LA (1994) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. Atlas series 1. SEPM, Tulsa, 265 pp

  22. Deocampo DM (2002) Sedimentary processes and lithofacies in lake-margin groundwater-fed wetlands in East Africa. In: Ashley GM, Renaut RW (eds) Sedimentation in continental rifts. Special publication 73. SEPM, Tulsa, pp 295–308

  23. Duffy CJ, Al-Hassan S (1988) Groundwater circulation in a closed desert basin: topographic scaling and climate forcing. Water Resour Res 24:1675–1688

    Article  Google Scholar 

  24. El Tabakh M, Schreiber BC (1998) Diagenesis of the Newark Rift Basin, eastern North America. Sedimentology 45:855–874

    Article  Google Scholar 

  25. Eugster HP, Hardie LA (1975) Sedimentation in an ancient playa-lake complex: the Wilkins Peak Member of the Green River Formation of Wyoming. Geol Soc Am Bull 86:319–334

    Article  Google Scholar 

  26. Finkelstein DB, Hay RL, Altaner SP (1999) Origin and diagenesis of lacustrine sediments, upper Oligocene Creede Formation, southwestern Colorado. Geol Soc Am Bull 111:1175–1191

    Article  Google Scholar 

  27. Fraser NC, Grimaldi DA (2003) Late Triassic continental faunal change: new perspectives on Triassic insect diversity as revealed by a locality in the Danville basin, Virginia, Newark Supergroup. In: Letourneau PM, Olsen PE (eds) The Great Rift Valleys of Pangaea in Eastern North America: sedimentology, stratigraphy and paleontology, vol 2. Columbia University Press, New York, pp 192–205

    Google Scholar 

  28. Fraser NC, Grimaldi DA, Olsen PE, Axsmith B (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–619

    Article  Google Scholar 

  29. Fürsich FT, Sha J, Jiang B, Pan Y (2007) High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeogr Palaeoclimatol Palaeoecol 253:434–457

    Article  Google Scholar 

  30. Gall JC (1971) Faunes et paysages du Grès à Voltzia du Nord des Vosges. Essai Paléoécologique sur le Bundsandstein supérieur. Mémoires du Service de la Carte géologique d’Alsace-Lorraine 34:1–318

    Google Scholar 

  31. Gell PA, Barker PA, DeDeckker P, Last WM, Jelicic L (1994) The Holocene history of West Basin lake, Victoria, Australia; chemical changes based on fossil biota and sediment mineralogy. J Paleolimnol 12:235–258

    Article  Google Scholar 

  32. Gierlowski-Kordesch E (2010) Lacustrine carbonates. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in continental settings, vol 61. Elsevier, Amsterdam, pp 1–101

    Google Scholar 

  33. Gierlowski-Kordesch E, Park LE (2004) Comparing species diversity in the modern and fossil record of lakes. J Geol 112:703–717

    Article  Google Scholar 

  34. Gierlowski-Kordesch E, Rust BR (1994) The Jurassic East Berlin Formation, Hartford Basin, Newark Supergroup (Connecticut and Massachusetts): a saline lake-playa-alluvial plain system. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient Saline Lakes. Special publication 50. SEPM, Tulsa, pp 249–265

  35. Gikunju JK, Maitho TE, Birkeland JM, Lökken P (1992) Fluoride levels in water and fish from Lake Magadi (Kenya). Hydrobiologia 234:123–127

    Article  Google Scholar 

  36. Gore PJW (1986) Depositional framework of a Traissic rift basin: The Durham and Sanford sub-basins of the Deep River Basin, North Carolina. In Textoris DA (ed) Southeastern United States: Third Annual Midyear Meeting, Raleigh, North Carolina, Field Guidebook, SEPM, Field Trip no. 3, pp 55–115

  37. Grimaldi D, Shmakov A, Fraser N (2004) Mesozoic thrips and early evolution of the order Thysanoptera (Insecta). J Paleontol 78:941–952

    Article  Google Scholar 

  38. Grimaldi D, Junfeng Z, Fraser NC, Rasnitsyn A (2005) Revision of the bizarre Mesozoic scorpionflies in the Pseudopolycentropodidae (Mecopteroidea). Insect Syst Evol 36:443–458

    Google Scholar 

  39. Heggie D, Skyring G (2005) Ozestuaries database. On line at www.ozestuaries.org/indicators/In_toc_ts_f.html. Maintained by Geosciences Australia

  40. Hilsenhoff WL (1991) Diversity and classification of insects and collembolan. In: Thorp JH, Covich AP (eds) Ecology and classification of North American freshwater invertebrates. Academic Press, Inc., San Diego, pp 593–663

    Google Scholar 

  41. Horton JW, McConnell KJ (1991) The western piedmont. In: Horton JW, Zullo VA (eds) The geology of the carolinas. The University of Tennessee Press, Knoxville, pp 36–58

    Google Scholar 

  42. Kent DV, Olsen PE (1997) Paleomagnetism of Upper Triassic continental sedimentary rocks from the Dan River-Danville rift basin (eastern North America). Geol Soc Am Bull 109:366–377

    Article  Google Scholar 

  43. Kilham P, Cloke PL (1990) The evolution of saline lake waters: gradual and rapid biogeochemical pathways in the Bosatu Lake District, Tanzania. Hydrobiologia 197:35–50

    Article  Google Scholar 

  44. Kilham P, Hecky RE (1973) Fluoride: Geochemical and ecological significance in east African waters and sediments. Limnol Oceanogr 18:932–945

    Article  Google Scholar 

  45. Larsen CPS, Pienitz R, Smol JP, Moser KA, Cumming BF, Blais JM, Macdonald GM, Hall RI (1998) Relations between lake morphometry and the presence of laminated lake sediments: a re-examination of Larsen and Macdonald (1993). Quat Sci Rev 17:711–717

    Article  Google Scholar 

  46. Last WM (1990) Lacustrine dolomite; an overview of modern, Holocene, and Pleistocene occurrences. Earth Sci Rev 27:221–263

    Article  Google Scholar 

  47. Last WM, DeDeckker P (1990) Modern and Holocene carbonate sedimentology of two saline volcanic maar lakes, southern Australia. Sedimentology 37:967–981

    Article  Google Scholar 

  48. Last WM, Vance RE, Wilson S, Smol JP (1998) A multi-proxy limnologic record of rapid early Holocene hydrologic change on the northern Great Plains, southwestern Saskatchewan, Canada. Holocene 8:503–520

    Article  Google Scholar 

  49. Leventhal JS (1995) Carbon-sulfur plots to show diagenetic and epigenetic sulfidization in sediments. Geochim Cosmochim Acta 59:1207–1211

    Article  Google Scholar 

  50. Liutkus CM, Wright JD (2008) The influence of hydrology and climate on the isotope geochemistry of playa carbonates: a study from Pilot Valley, Nevada, USA. Sedimentology 55:965–978

    Article  Google Scholar 

  51. Meyertons CT (1963) Triassic formations of the Danville basin. Virginia Division of Mineral Resources, Report of Investigations, vol 6, pp 1–65

  52. Muttoni G, Kent DV, Olsen PE, Di Stefano P, Lowrie W, Bernasconi SM, Hernandez FM (2004) Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the Late Triassic Newark astrochronological polarity time scale. Geol Soc Am Bull 116:1043–1058

    Article  Google Scholar 

  53. Olsen PE (1979) A new aquatic eosuchian from the Newark Supergroup (Late Triassic-Early Jurassic) of North Carolina and Virginia. Postilla 176:1–14

    Google Scholar 

  54. Olsen PE (1986) A 40-million-year lake record of early Mesozoic orbital climatic forcing. Science 234:842–848

    Article  Google Scholar 

  55. Olsen PE, Johansson AK (1994) Field guide to Late Triassic tetrapod sites in Virginia and North Carolina. In: Fraser NC, Sues H-D (eds) In the shadow of the dinosaurs. Cambridge University Press, New York, pp 408–443

    Google Scholar 

  56. Olsen PE, Remington CL, Cornet B, Thomson KS (1978) Cyclic change in Late Triassic terrestrial communities. Science 201:729–733

    Article  Google Scholar 

  57. Olsen PE, Schlische RW, Gore PJW (1989) Tectonic, depositional, and paleoecological history of early Mesozoic Rift Basins, Eastern North America. 28th International geological congress, guidebook for field trip T351, American Geophysical Union, Washington, DC

  58. Olsen PE, Froelich AJ, Daniels DL, Smoot JP, Gore PJW (1991) Rift basins of early Mesozoic age. In: Horton W (ed) Geology of the carolinas. University of Tennessee Press, Knoxville, pp 142–170

    Google Scholar 

  59. Pache M, Reitner J, Arp G (2001) Geochemical evidence for the formation of a large Miocene “travertine” mound at a sublacustrine spring in a soda lake (Wallerstein Castle Rock, Nördlinger Ries, Germany). Facies 45:211–230

    Article  Google Scholar 

  60. Park LE, Downing KF (2001) Paleoecology of an exceptionally preserved arthropod fauna from lake deposits of the Miocene Barstow Formation, Southern California, USA. Palaios 16:175–184

    Google Scholar 

  61. Partey F, Lev S, Casey R, Widom E, Lueth VW, Rakovan J (2009) Source of fluorine and petrogenesis of the Rio Grande Rift-Type barite-fluorite-galena deposits. Econ Geol 104:505–520

    Article  Google Scholar 

  62. Pratt BR (1998) Syneresis cracks: subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sediment Geol 117:1–10

    Article  Google Scholar 

  63. Quinby-Hunt MS, Wilde P (1996) Chemical depositional environments of calcic marine black shales. Econ Geol 91:4–13

    Article  Google Scholar 

  64. Renaut RW, Tiercelin J-J (1994) Lake Bogoria, Kenya rift valley—a sedimentological overview. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient Saline Lakes. Special publication 50. SEPM, Tulsa, pp 101–123

  65. Schlische RW (2003) Progress in understanding the structural geology, basin evolution, and tectonic history of the eastern North American rift system. In: LeTourneau PM, Olsen PE (eds) The Great Rift Valleys of Pangea in Eastern North America: tectonics, structure, and volcanism, vol 1. Columbia University Press, New York, pp 21–64

    Google Scholar 

  66. Scholl DW (1960) Pleistocene algal pinnacles at Searles Lake, California. J Sediment Petrol 30:414–431

    Google Scholar 

  67. Scott J, Renaut RW, Owen RB, Sarjeant WAS (2007) Biogenic activity, trace formation, and trace taphonomy in the marginal sediments of saline, alkaline Lake Bogoria, Kenya Rift Valley. In: Bromley RG, Buatois LA, Mangano G, Genise JF, Melchor RN (eds) Sediment-organism interactions; a multifaceted ichnology. Society for sedimentary geology special publication 88, pp 311–332

  68. Scott J, Renaut RW, Buatois LA, Owen RB (2009) Biogenic structures in exhumed surfaces around saline lakes: an example from Lake Bogoria, Kenya Rift Valley. Palaeogeogr Palaeoclimatol Palaeoecol 272:176–198

    Article  Google Scholar 

  69. Shcherbakov DE (2008) Insect recovery after the Permian/Triassic crisis. Alavesia 2:125–131

    Google Scholar 

  70. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford

    Google Scholar 

  71. Valero Garces BL, Gisbert Aguilar J (1994) Permian saline lakes in the Aragón-Béarn basin, western Pyrenees. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient Saline Lakes. Special publication 50. SEPM, Tulsa, pp 267–290

  72. Van Alstine RE (1976) Continetal rifts and lineaments associated with major fluorspar districts. Econ Geol 71:977–987

    Article  Google Scholar 

  73. van de Kamp PC, Leake BE (1996) Petrology, geochemistry, and Na-metasomatism of Triassic-Jurassic non-marine clastic sediments in the Newark, Hartford, and Deerfield rift basins, northeastern USA. Chem Geol 133:89–124

    Article  Google Scholar 

  74. Watson TL, Grasty JS (1915) Barite of the Appalachian states. Chem Eng 21:135–143

    Google Scholar 

  75. Wright VP (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol 126:147–157

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to Paul Olsen, Hans Sues, Dave Grimaldi, Brian Axsmith, and Dennis Kent for many fruitful discussions on Newark Supergroup paleontology and stratigraphy. We thank Paul Olsen, Dennis Kent, Brian Axsmith, Dave Grimaldi, Vladimir Blagoderov, Bruce Cornet, Michael Engels, Tam Nguyen, Christa Hampton and Julian McCarthy for their assistance in the field. Additional thanks go to Elizabeth Gierlowski-Kordesch, Bob Demicco, Richard Abbott, Sarah Carmichael, Carol de Wet, Dan Deocampo, Fred Webb, Jr., Katelyn McGinnis, and the group from PaleoLunch for their insight into the carbonate geochemistry and thin-section analysis. Special thanks to the editorial staff of the Journal of Paleolimnology and several anonymous reviewers for helpful reviews of an earlier version of this manuscript. Research into the paleontology and sedimentology of the Solite Quarry has been supported by National Science Foundation grant EAR 0106309 to Nicholas Fraser and David Grimaldi. The fieldwork was supported by a National Geographic Society grant to NCF and by the Virginia Museum of Natural History.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. M. Liutkus.

Additional information

P. C. Ragland—deceased.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liutkus, C.M., Beard, J.S., Fraser, N.C. et al. Use of fine-scale stratigraphy and chemostratigraphy to evaluate conditions of deposition and preservation of a Triassic Lagerstätte, south-central Virginia. J Paleolimnol 44, 645–666 (2010). https://doi.org/10.1007/s10933-010-9445-1

Download citation

Keywords

  • Rift basin
  • Lacustrine
  • Newark Supergroup
  • Insects
  • Danville-Dan River Basin