Skip to main content
Log in

Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A reliable geochemical paleo-indicator for phosphorus remains elusive, despite the importance of understanding historical changes in the nutrient status of aquatic ecosystems. We assessed the potential of phytate (salts of myo-inositol hexakisphosphate) as a novel phosphorus-specific paleo-indicator by measuring its concentrations in dated sediments from an embayment in Helsinki, Finland, with a known 200-year history of trophic changes. Phytate was extracted in a solution containing sodium hydroxide and EDTA and detected by solution 31P NMR spectroscopy with spectral deconvolution. Concentrations varied markedly with sediment depth and paralleled previously determined changes in diatom assemblages and geochemical indicators linked to trophic status. In contrast, total sediment phosphorus did not reflect phosphorus inputs to the embayment, presumably due to the mobilization of inorganic phosphate under anoxic conditions during periods of high pollutant loading. Importantly, phytate appeared to be stable in these brackish sediments, in contrast to other organic and inorganic phosphates which declined abruptly with depth. We therefore conclude that phytate represents a potentially important indicator of historical changes in phosphorus inputs to water bodies, although additional studies are required to confirm its stability under conditions likely to be encountered in lakes and coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlgren J, Tranvik L, Gogoll A, Waldebäck M, Markides K, Rydin E (2005) Sediment depth attenuation of biogenic phosphorus compounds measured by 31P NMR. Environ Sci Technol 39:867–872. doi:10.1021/es049590h

    Article  Google Scholar 

  • Ahlgren J, Reitzel K, Tranvik L, Gogoll A, Rydin E (2006) Degradation of organic phosphorus compounds in anoxic Baltic Sea sediments: a 31P nuclear magnetic resonance study. Limnol Oceanogr 51:2341–2348

    Google Scholar 

  • Anderson NJ (1997) Historical changes in epilimnetic phosphorus concentrations in six rural lakes in Northern Ireland. Freshw Biol 38:427–440. doi:10.1046/j.1365-2427.1997.00249.x

    Article  Google Scholar 

  • Anderson NJ (1998) Variability of diatom-inferred phosphorus profiles in a small lake basin and its implications for histories of lake eutrophication. J Paleolimnol 20:47–55. doi:10.1023/A:1007923813511

    Article  Google Scholar 

  • Anderson NJ, Rippey B (1994) Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshw Biol 32:625–639. doi:10.1111/j.1365-2427.1994.tb01153.x

    Article  Google Scholar 

  • Andrén E, Shimmield G, Brand T (1999) Environmental changes of the last three centuries indicated by siliceous microfossil records from the southwestern Baltic Sea. Holocene 9:25–38. doi:10.1191/095968399676523977

    Article  Google Scholar 

  • Bennion H, Fluin J, Simpson GL (2004) Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J Appl Ecol 41:124–138. doi:10.1111/j.1365-2664.2004.00874.x

    Article  Google Scholar 

  • Blomqvist S, Larsson U, Borg H (1992) Heavy metal decrease in the sediments of a Baltic Bay following tertiary sewage treatment. Mar Pollut Bull 24:258–266. doi:10.1016/0025-326X(92)90564-M

    Article  Google Scholar 

  • Bradshaw EG, Anderson NJ (2001) Validation of a diatom-phosphorus calibration set for Sweden. Freshw Biol 46:1035–1048. doi:10.1046/j.1365-2427.2001.00732.x

    Article  Google Scholar 

  • Cade-Menun BJ, Preston CM (1996) A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci 161:770–785. doi:10.1097/00010694-199611000-00006

    Article  Google Scholar 

  • Cade-Menun BJ, Benitez-Nelson CR, Pellechia P, Paytan A (2005) Refining 31P nuclear magnetic resonance spectroscopy for marine particulate samples: storage conditions and extraction recovery. Mar Chem 97:293–306. doi:10.1016/j.marchem.2005.05.005

    Article  Google Scholar 

  • Carman R, Edlund G, Damberg C (2000) Distribution of organic and inorganic phosphorus compounds in marine and lacustrine sediments: a 31P NMR study. Chem Geol 163:101–114. doi:10.1016/S0009-2541(99)00098-4

    Article  Google Scholar 

  • Cooper SR, Brush GS (1991) Long-term history of Chesapeake Bay anoxia. Science 254:992–996. doi:10.1126/science.254.5034.992

    Article  Google Scholar 

  • Cosgrove DJ (1973) Inositol polyphosphates in activated sludge. J Environ Qual 2:483–485

    Google Scholar 

  • De Groot CJ, Golterman HL (1993) On the presence of organic phosphate in some Camargue sediments: evidence for the importance of phytate. Hydrobiologia 252:117–126

    Google Scholar 

  • EDDI (2001) European Diatom Database. Newcastle University, UK, http://craticula.ncl.ac.uk/Eddi/jsp/datasets.jsp

  • Engstrom DR, Wright HE Jr (1985) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY (ed) Lake sediments and environmental history. University of Leicester Press, Leicester, pp 11–67

    Google Scholar 

  • Gardolinski PCFC, Worsfold PJ, McKelvie ID (2004) Seawater induced release and transformation of organic and inorganic phosphorus from river sediments. Water Res 38:688–692. doi:10.1016/j.watres.2003.10.048

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Smol JP, Zirnhelt N (1997) Comparison of diatoms fossil pigments and historical records as measures of lake eutrophication. Freshw Biol 38:401–417. doi:10.1046/j.1365-2427.1997.00251.x

    Article  Google Scholar 

  • Harland BF, Oberleas D (1987) Phytate in foods. World Rev Nutr Diet 52:235–259

    Google Scholar 

  • Hinedi ZR, Chang AC, Lee RWK (1989) Characterization of phosphorus in sludge extracts using phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual 18:323–329

    Google Scholar 

  • Hupfer M, Gächter R, Rüegger H (1995) Polyphosphate in lake sediments: 31P NMR spectroscopy as a tool for its identification. Limnol Oceanogr 40:610–617

    Google Scholar 

  • Hupfer M, Rube B, Schmieder P (2004) Origin and diagenesis of polyphosphate in lake sediments: a 31P-NMR study. Limnol Oceanogr 49:1–10

    Google Scholar 

  • Jensen HS, Mortensen PB, Andersen FØ, Rasmussen E, Jensen A (1995) Phosphorus cycling in a coastal marine sediment, Aarhus Bay, Denmark. Limnol Oceanogr 5:908–917

    Google Scholar 

  • Joung H, Juen BY, Li SJ, Kim J, Woodhouse LR, King JC et al (2007) Fecal phytate excretion varies with dietary phytate and age in women. J Am Coll Nutr 26:295–302

    Google Scholar 

  • Korhola A, Blom T (1996) Marked early 20th century pollution and the subsequent recovery of Töölö Bay central Helsinki as indicated by subfossil diatom assemblage changes. Hydrobiologia 341:169–179. doi:10.1007/BF00018120

    Article  Google Scholar 

  • Mackereth FJH (1969) A short core sampler for subaqueous deposits. Limnol Oceanogr 14:145–151

    Google Scholar 

  • Makarov MI, Haumaier L, Zech W (2002) Nature of soil organic phosphorus: an assessment of peak assignments in the diester region of 31P NMR spectra. Soil Biol Biochem 34:1467–1477. doi:10.1016/S0038-0717(02)00091-3

    Article  Google Scholar 

  • McKelvie ID (2007) Inositol phosphates in aquatic systems. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CAB International, Wallingford, pp 261–277

    Google Scholar 

  • Smith MTE, Cade-Menun BJ, Tibbett M (2006) Soil phosphorus dynamics and phytoavailability from sewage sludge at different stages in a treatment stream. Biol Fertil Soils 42:186–197. doi:10.1007/s00374-005-0014-0

    Article  Google Scholar 

  • Sommers LE, Harris RF, Williams JDH, Armstrong DE, Syers JK (1972) Fractionation of organic phosphorus in lake sediments. Soil Sci Soc Am Proc 36:51–54

    Article  Google Scholar 

  • Suzumura M, Kamatani A (1993) Isolation and determination of inositol hexaphosphate in sediments from Tokyo Bay. Geochim Cosmochim Acta 57:2197–2202. doi:10.1016/0016-7037(93)90561-A

    Article  Google Scholar 

  • Suzumura M, Kamatani A (1995a) Mineralization of inositol hexaphosphate in aerobic and anaerobic marine-sediments—implications for the phosphorus cycle. Geochim Cosmochim Acta 59:1021–1026. doi:10.1016/0016-7037(95)00006-2

    Article  Google Scholar 

  • Suzumura M, Kamatani A (1995b) Origin and distribution of inositol hexaphosphate in estuarine and coastal sediments. Limnol Oceanogr 40:1254–1261

    Article  Google Scholar 

  • Tikkanen M, Korhola A, Seppä H, Virkanen J (1997) A long-term record of human impacts on an urban ecosystem in the sediments of Töölönlahti Bay in Helsinki Finland. Environ Conserv 24:326–337. doi:10.1017/S037689299700043X

    Article  Google Scholar 

  • Turner BL, Newman S (2005) Phosphorus cycling in wetlands: the importance of phosphate diesters. J Environ Qual 34:1921–1929. doi:10.2134/jeq2005.0060

    Article  Google Scholar 

  • Turner BL, Richardson AE (2004) Identification of scyllo-inositol phosphates in soils by solution phosphorus-31 nuclear magnetic resonance spectroscopy. Soil Sci Soc Am J 68:802–808

    Google Scholar 

  • Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond Ser B 357:449–469. doi:10.1098/rstb.2001.0837

    Article  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003a) Phosphorus-31 nuclear magnetic resonance spectral assignments of phosphorus compounds in soil NaOH–EDTA extracts. Soil Sci Soc Am J 67:497–510

    Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003b) Quantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution 31P NMR spectroscopy and spectral deconvolution. Soil Sci 168:469–478. doi:10.1097/00010694-200307000-00002

    Article  Google Scholar 

  • Turner BL, Mahieu N, Condron LM (2003c) The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy. Org Geochem 34:1199–1210. doi:10.1016/S0146-6380(03)00061-5

    Article  Google Scholar 

  • Turner BL, Cade-Menun BJ, Condron LM, Newman S (2005) Extraction of soil organic phosphorus. Talanta 66:294–306. doi:10.1016/j.talanta.2004.11.012

    Article  Google Scholar 

  • Turner BL, Newman S, Newman J (2006) Organic phosphorus sequestration in subtropical treatment wetlands. Environ Sci Technol 40:727–733. doi:10.1021/es0516256

    Article  Google Scholar 

  • Turner BL, Richardson AE, Mullaney EJ (eds) (2007) Inositol phosphates: linking agriculture and environment. CAB International, Wallingford

    Google Scholar 

  • Vaalgamaa S (2004) The effect on urbanisation on Laajalahti Bay Helsinki City as reflected by sediment geochemistry. Mar Pollut Bull 48:650–662. doi:10.1016/j.marpolbul.2003.10.008

    Article  Google Scholar 

  • Watts EE, Dean PAW, Martin RR (2002) 31P nuclear magnetic resonance study of sediment microbial phospholipids. Can J Anal Sci Spectrosc 47:127–133

    Google Scholar 

  • Weckström K (2006) Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms. J Paleolimnol 35:571–592. doi:10.1007/s10933-005-5264-1

    Article  Google Scholar 

  • Weimer WC, Armstrong DE (1979) Naturally occurring organic phosphorus compounds in aquatic plants. Environ Sci Technol 13:826–829. doi:10.1021/es60155a003

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology. Lake and river ecosystems. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

We thank Alex Blumenfeld (University of Idaho) and Paul Leeson (University of Helsinki) for analytical support, and S. Vaalgamaa and A. Korhola (University of Helsinki) for assistance in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, B.L., Weckström, K. Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments. J Paleolimnol 42, 391–400 (2009). https://doi.org/10.1007/s10933-008-9283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9283-6

Keywords

Navigation