Skip to main content

Advertisement

Log in

Palaeoenvironmental evolution of Cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to Holocene sea-level rise

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A 61-cm core was obtained from 4 m below the water table in Cenote Aktun Ha, on the Yucatan Peninsula, Mexico. The cenote is 8.6 km from the Caribbean coast and its formation and evolution have been largely affected by sea-level change. The base of the core dates to 6,940–6,740 cal year BP and overlying sediments were deposited rapidly over the subsequent ~200 years. The pollen record shows that the cenote evolved from a marsh dominated by red mangrove (Rhizophora mangle) and fern (Polypodiaceae) to an open-water system. These vegetation changes were controlled by water level and salinity and are thus useful indicators of past sea level. At the base, the δ13Corg isotopic ratios reveal the influence of terrestrial vegetation (−29‰ VPDB), but shift to more negative values up-core (−33‰), indicating an influence from particulate matter in the flooded cenote pool. Although microfossil populations were nearly absent through most of the core, the microfossil assemblage in the upper 6 cm of the core is dominated by the juvenile foraminifer Ammonia tepida and the thecamoebian genus Centropyxis. These populations indicate open-water conditions in the cenote and a major environmental shift around 6,600 cal year BP, which is related to sea-level rise in the Caribbean basin. These data fit well with previously established sea-level curves for the Caribbean Sea. Our reconstruction of the environmental history of Cenote Aktun Ha helps elucidate the floral and hydrological history of the region, and highlights the utility of cenote sediments for studying the Holocene sea-level history of the Caribbean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez Zarikian CA, Swart PK, Gifford JA, Blackwelder PL (2005) Holocene paleohydrology of Little Salt Spring, Florida, based on ostracod assemblages and stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 225:134–156. doi:10.1016/j.palaeo.2004.01.023

    Article  Google Scholar 

  • Back W, Hanshaw BB, Herman JS, Van Driel JN (1986) Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology 14:137–140. doi:10.1130/0091-7613(1986)14<137:DDOAPR>2.0.CO;2

    Article  Google Scholar 

  • Beddows PA (2004) Groundwater hydrology of a coastal conduit carbonate aquifer: Caribbean Coast of the Yucatán Peninsula, México. PhD Thesis, School of Geographical Sciences, University of Bristol, 303 pp

  • Beddows PA, Smart PL, Whitaker FF, Smith SL (2007) Decoupled fresh–saline groundwater circulation of a coastal carbonate aquifer: spatial patterns of temperature and specific electrical conductivity. J Hydrol (Amst) 346:18–32. doi:10.1016/j.jhydrol.2007.08.013

    Article  Google Scholar 

  • Birks HJB, Line JM (1992) The use of rarefaction analysis for estimating palynological richness from quaternary pollen analytical data. Holocene 2:1–10

    Google Scholar 

  • Blanchon P (2005) Comments on “Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat” by Toscano and Macintyre. Coral Reefs 24:183–186. Coral Reefs (2003) 22:257–270. doi:10.1007/s00338-004-0472-0

    Google Scholar 

  • Blanchon P, Shaw J (1995) Reef drowning during the last deglaciation: evidence for catastrophic sea level rise and ice sheet collapse. Geology 23:4–8. doi:10.1130/0091-7613(1995)023<0004:RDDTLD>2.3.CO;2

    Article  Google Scholar 

  • Blanchon P, Jones B, Ford DC (2002) Discovery of a submerged relic reef and shoreline off Grand Cayman: further support for an early Holocene jump in sea level. Sediment Geol 147:253–270. doi:10.1016/S0037-0738(01)00143-9

    Article  Google Scholar 

  • Blum MD, Misner TJ, Collins ES, Scott DB, Morton RA, Aslan A (2001) Middle Holocene sea-level rise and highstand at +2 m, Central Texas Coast. J Sediment Res 71(4):581–588. doi:10.1306/112100710581

    Article  Google Scholar 

  • Bush MB, Weng C (2007) Introducing a new (freeware) tool for palynology. J Biogeogr 34(3):377–380. doi:10.1111/j.1365-2699.2006.01645.x

    Article  Google Scholar 

  • Coke JG, Young TM (1990) Cenote Carwash: Tulum, Q. Roo Mexico. Quintana Roo Speleological Survey, Mexico [Map]

  • Coke J, Perry EC, Long A (1991) Sea-level curve. Nature 353:25. doi:10.1038/353025a0

    Article  Google Scholar 

  • Curtis JH, Hodell DA, Brenner M (1996) Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat Res 46:37–47. doi:10.1006/qres.1996.0042

    Article  Google Scholar 

  • Cwynar LC, Burden E, McAndrews JH (1979) An inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Can J Earth Sci 16:1115–1120

    Google Scholar 

  • Davidson DE (2007) Modern pollen spectra from mangrove ecosystems of the Sabana-Camagüey Archipelago and Ciego de Avila, Cuba. Unpublished M.Sc. Thesis, Department of Geography, University of Toronto

  • Digerfeldt G, Hendry MD (1987) An 8000 year Holocene sea-level record from Jamaica: implications for interpretation of Caribbean reef and coastal history. Coral Reefs 5:165–169. doi:10.1007/BF00300959

    Article  Google Scholar 

  • Ellison J (1993) Mangrove retreat with rising sea-level, Bermuda. Estuar Coast Shelf Sci 37:75–87. doi:10.1006/ecss.1993.1042

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis. John Wiley and Sons, Chichester, UK, 338 pp

    Google Scholar 

  • Fairbanks RG (1989) A 17,000 year glacio-eustatic sea level record; influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature 342:637–642. doi:10.1038/342637a0

    Article  Google Scholar 

  • Gischler E (2006) Comment on “Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat” by Toscano and Macintyre. Coral Reefs 25:273–279. Coral Reefs 22:257–270, and their response in Coral Reefs 24:187–190 (2005). doi:10.1007/s00338-006-0101-1

    Google Scholar 

  • Gischler E, Hudson JH (2004) Holocene development of the Belize Barrier Reef. Sediment Geol 164:223–236. doi:10.1016/j.sedgeo.2003.10.006

    Article  Google Scholar 

  • Grimm EC, Jacobson GL Jr, Watts WA, Hansen BCS, Maasch KA (1993) A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science 261:198–200. doi:10.1126/science.261.5118.198

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi:10.1023/A:1008119611481

    Article  Google Scholar 

  • Hodell DA, Curtis JH, Brenner M (1995) Possible role of climate in the collapse of Classic Maya civilization. Nature 375:391–394. doi:10.1038/375391a0

    Article  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH, Guilderson T (2001) Solar forcing of drought frequency in the Maya Lowlands. Science 292:1367–1370. doi:10.1126/science.1057759

    Article  Google Scholar 

  • Hodell DA, Brenner M, Curtis JH, Medina-Gonzalez R, Can EI, Albornaz-Pat A, Guilderson TP (2005) Climate change on the Yucatan Peninsula during the Little Ice Age. Quat Res 63:109–121. doi:10.1016/j.yqres.2004.11.004

    Article  Google Scholar 

  • Holmes JA (1998) A late quaternary ostracod record from Wallywash Great Pond, a Jamaican marl lake. J Paleolimnol 19:115–128. doi:10.1023/A:1007967122665

    Article  Google Scholar 

  • Honig CA, Scott DB (1987) Post-glacial stratigraphy and sea-level change in southwestern New Brunswick. Can J Earth Sci 24:354–364

    Article  Google Scholar 

  • Islebe GA, Sanchez O (2002) History of Late Holocene vegetation at Quintana Roo, Caribbean coast of Mexico. Plant Ecol 160:187–192. doi:10.1023/A:1015865932012

    Article  Google Scholar 

  • Leyden BW (2002) Pollen evidence for climatic variability and cultural disturbance in the Maya Lowlands. Anc Mesoam 13:85–101. doi:10.1017/S0956536102131099

    Article  Google Scholar 

  • Leyden BW, Brenner M, Whitmore T, Curtis JH, Piperno D, Dahlin BH (1996) A record of long and short-term climatic variation from northwest Yucatan: Cenote San Jose Chulchaca. In: Fedick SL (ed) The managed mosaic: ancient Maya agriculture and resource use. University of Utah Press, Utah, pp 30–50

    Google Scholar 

  • Leyden BW, Brenner M, Dahlin BH (1998) Cultural and climatic history of Coba, a Lowland Maya City in Quintana Roo, Mexico. Quat Res 49:111–122. doi:10.1006/qres.1997.1941

    Article  Google Scholar 

  • Lighty RG, Macintyre IG, Stuckenrath R (1982) Acropora palmata reef framework: a reliable indicator of sea-level in the western Atlantic for the past 10,000 years. Coral Reefs 1:125–130. doi:10.1007/BF00301694

    Article  Google Scholar 

  • Marin LE, Perry EC (1994) The hydrogeology and contamination potential of northwestern Yucatan, Mexico. Geofis Int 33:619–623

    Google Scholar 

  • Medioli FS, Scott DB (1983) Holocene Arcellacea (thecamoebians) from Eastern Canada. Cushman Found Spec Publ 21:5–63

    Google Scholar 

  • Miller AAL, Mudie PJ, Scott DB (1982) Holocene history of Bedford Basin, Nova Scotia: Foraminifera, dinoflagellate and pollen records. Can J Earth Sci 19:214–219

    Google Scholar 

  • Moore RC (ed) (1961) Treatise on invertebrate paleontology. Part Q. Arthropoda 3, Crustacea, Ostracoda. The Geological Society of America and The University of Kansas Press, Lawrence, New York, 442 pp

    Google Scholar 

  • Palacios Chávez R, Ludlow-Wiechers B, Villanueva GR (1991) Flora Palinologica de la Reserva de la Biosfera de Sian Ka’an, Quintana Roo, Mexico. Centro de Investigaciones de Quintana Roo, Chetumal, Mexico, 321 pp

    Google Scholar 

  • Peros MC, Gajewski K (2008) Testing the reliability of pollen-based diversity estimates. J Paleolimnol 40:357–368. doi:10.1007/s10933-007-9166-2

    Article  Google Scholar 

  • Peros MC, Reinhardt EG, Davis AM (2007a) A 6000-year record of ecological and hydrological changes from Laguna de la Leche, north coastal Cuba. Quat Res 67:69–82. doi:10.1016/j.yqres.2006.08.004

    Article  Google Scholar 

  • Peros MC, Reinhardt EG, Schwarcz HP, Davis AM (2007b) High-resolution paleosalinity reconstruction from Laguna de la Leche, north coastal Cuba, using Sr, O, and C isotopes. Palaeogeogr Palaeoclimatol, Palaeoecol 245:535–550. doi:10.1016/j.palaeo.2006.09.006

    Article  Google Scholar 

  • Pohlman JW, Iliffe TM, Cifuentes LA (1997) A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Mar Ecol Prog Ser 155:17–27. doi:10.3354/meps155017

    Article  Google Scholar 

  • Pointier J (2001) Invading freshwater snails and biological control in Martinique Island, French West Indies. Mem Inst Oswaldo Cruz 96:67–74. doi:10.1590/S0074-02762001000900009

    Article  Google Scholar 

  • Quintana Roo Speleological Society (QRSS) (12 January 2008) List of long underwater caves in Quintana Roo, Mexico [Online]. Available: http://www.caves.org/project/qrss/qrlong.htm [Accessed online 16 Jan 2008]

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac FG, Manning SW, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058

    Google Scholar 

  • Reinhardt EG, Little M, Donato S, Findlay D, Krueger A, Clark C, Boyce J (2005) Arcellacean (thecamoebian) evidence of land-use change and eutrophication in Frenchman’s Bay, Pickering, Ontario. Environ Geol 47:729–739. doi:10.1007/s00254-004-1213-y

    Article  Google Scholar 

  • Riveiros NV, Babalola AO, Boudreau REA, Patterson RT, Roe HM, Doherty C (2007) Modern distribution of salt marsh foraminifera and thecamoebians in the Seymour-Belize Inlet Complex, British Columbia, Canada. Mar Geol 242:39–63. doi:10.1016/j.margeo.2006.08.009

    Article  Google Scholar 

  • Roe HM, Patterson RT (2006) Distribution of thecamoebians (testate amoebae) in small lakes and ponds, Barbados, West Indies. J Foramin Res 36(2):116–134

    Google Scholar 

  • Roubik DW, Moreno E (1991) Pollen and spores of Barro Colorado Island. Missouri Botanical Garden, Monographs in systematic botany 36, St. Louis, 268 pp

  • Scott DB, Hermelin JOR (1993) A device for precision splitting of micropaleontological samples in liquid suspension. J Paleontol 67:151–154

    Google Scholar 

  • Scott DB, Gayes PT, Collins ES (1995) Mid-Holocene precedent for a future rise in sea-level along the Atlantic coast of North America. J Coast Res 11(3):615–622

    Google Scholar 

  • Scott DB, Medioli FS, Schafer CT (2001) Monitoring in coastal environments using foraminifera and thecamoebians. Cambridge University Press, Cambridge, UK, 172 pp

    Google Scholar 

  • Smart PL, Dawans JM, Whitaker F (1988) Carbonate dissolution in a modern mixing zone. Nature 335:811–813. doi:10.1038/335811a0

    Article  Google Scholar 

  • Smart PL, Beddows PA, Coke J, Doerr S, Smith S, Whitaker FF (2006) Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. Geol Soc Am Spec Pap 404:105–128

    Google Scholar 

  • Szabo BJ, Ward WC, Weidie AE, Brady MJ (1978) Age and magnitude of the late Pleistocene sea-level rise on the eastern Yucatan Peninsula. Geology 6:713–715. doi:10.1130/0091-7613(1978)6<713:AAMOTL>2.0.CO;2

    Article  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge, 419 pp

    Google Scholar 

  • Torrescano N, Islebe GA (2006) Tropical forest and mangrove history from southeastern Mexico: a 5000 yr pollen record and implications for sea level rise. Veg Hist Archaeobot 15:191–195. doi:10.1007/s00334-005-0007-9

    Article  Google Scholar 

  • Toscano MA, Macintyre IG (2003) Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22:257–270. doi:10.1007/s00338-003-0315-4

    Article  Google Scholar 

  • van Hengstum PJ, Reinhardt EG, Beddows PA, Huang RJ, Gabriel JJ (2008a) Thecamoebians (testate amoebae) and foraminifera from three anchialine cenotes in Mexico: low salinity (1.5–4.5‰) faunal transitions. J Foramin Res 38(4):305–317

    Google Scholar 

  • van Hengstum PJ, Reinhardt EG, Beddows PA, Schwarcz HP, Gabriel JJ (2008b) Foraminifera and testate amoebae (thecamoebians) in an anchialine cave: surface distributions from Aktun Ha (Carwash) cave system, Mexico. Limnol Oceanogr (in press)

  • Weidie AE (1985) Geology of the Yucatan Platform. In: Ward WC, Weidie AE, Back W (eds) Geology and hydrogeology of the Yucatan and quaternary geology of the Northeastern Yucatan Peninsula. New Orleans Geological Survey Field Trip Guide, pp 1–19

  • Whitmore TJ, Brenner M, Curtis JH, Dahlin BH, Leyden BW (1996) Holocene climatic and human influences on lakes of the Yucatan Peninsula, Mexico: an interdisciplinary, palaeolimnological approach. Holocene 6:273–287. doi:10.1177/095968369600600303

    Article  Google Scholar 

  • Yang W, Mazzullo SJ, Teal CS (2004) Sediments, facies tracts, and variations in sedimentation rates of Holocene platform carbonate sediments and associated deposits, Northern Belize—implications for “representative” sedimentation rates. J Sediment Res 74(4):498–512. doi:10.1306/012004740498

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge (1) Lic. Francisco Hernandez Franco, Encargado de la SEMARNAT (Quintana Roo); (2) Biol. Gustavo Maldonado Saldaña, Director of Secretaria del Medio Ambiente y Ecología for the municipality of Solidaridad; (3) Dir. Paul Sánchez-Navarro of the Centro Ecológico Akumal; (4) diving logistics and sampling from The Mexico Cave Exploration Project and Cindaq (F. Devos, C. Le Maillot, S. Meacham, and D. Riordan) and (5) B. Wilson and E. Utigard for SCUBA support, all of whom made this research possible. We thank J. Coke for permission to use the cave survey. Funding was provided by The Royal Geographic Society (with The institute of British Geographers), Ralph Brown Expedition Award (EGR and PAB), National Geographic (CRE Grant; EGR and PAB), NSERC research grants to PvH (PGSM) and EGR (Discovery).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy J. Gabriel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabriel, J.J., Reinhardt, E.G., Peros, M.C. et al. Palaeoenvironmental evolution of Cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to Holocene sea-level rise. J Paleolimnol 42, 199–213 (2009). https://doi.org/10.1007/s10933-008-9271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9271-x

Keywords

Navigation