Skip to main content

Advertisement

Log in

Sedimentary pellets as an ice-cover proxy in a High Arctic ice-covered lake

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Sediment aggregates (“sedimentary pellets”) within the sedimentary record of Lake A (83°00′ N, 75°30′ W), Ellesmere Island, Canada, are used to construct a 1000 year proxy record of ice-cover extent and dynamics on this perennially ice-covered, High Arctic lake. These pellets are interpreted to form during fall or early winter when littoral sediment adheres to ice forming around the lake’s periphery or during summer through the development of anchor ice. The sediment likely collects in ice interstices and is concentrated in the upper ice layers through summer surface ice melt and winter basal ice growth. The pellets remain frozen in the ice until a summer or series of summers with reduced ice cover allows for their deposition across the lake basin. Sedimentary pellet frequency within multiple sediment cores is used to develop a chronology of ice-cover fluctuations. This proxy ice-cover record is largely corroborated by a record of unusual sedimentation in Lake A involving iron-rich, dark-orange to red laminae overlying more diffuse laminae with a lighter hue. This sediment sequence is hypothesized to represent years with reduced ice cover through increased chemocline ventilation and iron deposition. During the past millennium, the most notable period of inferred reduced ice cover is ca. 1891 AD to present. Another period of ice cover mobility is suggested ca. 1582–1774 AD, while persistent ice cover is inferred during the 1800s and prior to 1582 AD. The proxy ice-cover record corresponds well with most regional melt-season proxy temperature and paleoecological records, especially during the 1800s and 1900s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alt BT (1985) 1550–1620: A period of summer accumulation in the Queen Elizabeth Islands. In: Harrington CR (ed) Climatic change in Canada 5: critical periods in the quaternary climatic history of Northern North America. National Museum of Canada, Ontario, Syllogeus 55, pp 461–479

    Google Scholar 

  • Antoniades D, Douglas MSV, Smol JP (2005) Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments. J Paleolimnol 33:349–360. doi:10.1007/s10933-004-6611-3

    Article  Google Scholar 

  • Antoniades D, Crawley C, Douglas MSV, Pienitz R, Andersen D, Doran PT et al (2007) Abrupt environmental change in Canada’s northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophys Res Lett 34:L18708. doi:10.1029/2007GL030947

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Developments in paleoenvironmental research (DEPR): tracking environmental change using lake sediments, volume 1: basin analysis, coring and chronological techniques. Kluwer Academic Publishers, Dordrecht, pp 171–203

    Google Scholar 

  • Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5:1–8. doi:10.1016/S0341-8162(78)80002-2

    Article  Google Scholar 

  • Belzile C, Vincent WF, Gibson JAE, Van Hove P (2001) Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in the High Arctic. Can J Fish Aquat Sci 58:2405–2418. doi:10.1139/cjfas-58-12-2405

    Article  Google Scholar 

  • Bradley RS, Retelle MJ, Ludlam SD, Hardy DR, Zolitschka B, Lamoureux SF et al (1996) The Taconite Inlet Lakes Project: a systems approach to paleoclimatic reconstruction. J Paleolimnol 16:97–110. doi:10.1007/BF00176930

    Article  Google Scholar 

  • Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37:425–430

    Google Scholar 

  • Dickman MD (1979) A possible varving mechanism for meromictic lakes. Quat Res 11:113–124. doi:10.1016/0033-5894(79)90072-3

    Article  Google Scholar 

  • Doran PT, McKay CP, Adams WP, English MC, Wharton RA Jr, Meyer MA (1996) Climate forcing and thermal feedback of residual lake-ice covers in the High Arctic. Limnol Oceanogr 41:839–848

    Google Scholar 

  • Douglas MSV, Smol JP, Blake W Jr (1994) Marked post-18th century environmental change in High-Arctic ecosystems. Science 266:416–419. doi:10.1126/science.266.5184.416

    Article  Google Scholar 

  • Edlund SA, Alt BT (1989) Regional congruence of vegetation and summer climate patterns in the Queen Elizabeth Islands, Northwest Territories, Canada. Arctic 42:3–23

    Google Scholar 

  • England J, Stewart TG (1985) Isotope geochemistry of stratified Lake “A,” Ellesmere Island, N.W.T., Canada. Can J Earth Sci 22:647–648. Discussion

    Article  Google Scholar 

  • Engstrom DR, Wright HE Jr (1984) Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth EY, Lund JWG (eds) Lake sediments and environmental history. Leicester University Press, Leicester, pp 11–62

    Google Scholar 

  • Environment Canada (2008) Adjusted historical Canadian climate data [online]. Website: http://www.cccma.ec.gc.ca/hccd/

  • Ferrante JG, Parker JI (1977) Transport of diatom frustules by copepod fecal pellets to the sediments of Lake Michigan. Limnol Oceanogr 22:92–98

    Article  Google Scholar 

  • Fisher DA, Koerner RM (1983) Ice core study: a climatic link between the past, present and future. In: Harrington CR (ed) Climatic change in Canada 3: National Museum of Natural Sciences Project on climatic change in Canada during the past 20,000 years. National Museum of Canada, Ontario, Syllogeus 49, pp 50–69

    Google Scholar 

  • Fisher DA, Koerner RM (1994) Signal and Noise in Four Ice-Core Records from the Agassiz Ice Cap, Ellesmere Island, Canada: Details of the Last Millennium for stable isotopes, melt and solid conductivity. Holocene 4:113–120. doi:10.1177/095968369400400201

    Article  Google Scholar 

  • Fisher DA, Koerner RM, Paterson WSB, Dansgaard W, Gundestrup N, Reeh N (1983) Effect of wind scouring on climatic records from ice-core oxygen-isotope profiles. Nature 301:205–209. doi:10.1038/301205a0

    Article  Google Scholar 

  • Fisher DA, Koerner RM, Reeh N (1995) Holocene climatic records from Agassiz Ice Cap, Ellesmere Island, NWT, Canada. Holocene 5:19–24. doi:10.1177/095968369500500103

    Article  Google Scholar 

  • Fountain AG, Tranter M, Nylen TH, Lewis KJ, Mueller DR (2004) Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. J Glaciol 50:35–45. doi:10.3189/172756504781830312

    Article  Google Scholar 

  • Gilbert R (1990) Rafting in glacimarine environments. In: Dowdeswell JA, Scourse JD (eds) Glacimarine environments: processes and sediments. Geological Society, London, Special Publication 53, pp 105–120

    Google Scholar 

  • Hardy DR, Bradley RS, Zolitschka B (1996) The climatic signal in varved sediments from Lake C2, northern Ellesmere Island, Canada. J Paleolimnol 16:227–238

    Google Scholar 

  • Hattersley-Smith G, Keys JE, Serson H, Mielke JE (1970) Density stratified lakes in northern Ellesmere Island. Nature 225:55–56. doi:10.1038/225055a0

    Article  Google Scholar 

  • Heron R, Woo M-K (1994) Decay of a High Arctic lake-ice cover: observations and modelling. J Glaciol 40:283–292

    Google Scholar 

  • Hughen KA, Overpeck JT, Anderson RF (2000) Recent warming in a 500-year palaeotemperature record from varved sediments, Upper Soper Lake, Baffin Island, Canada. Holocene 10:9–19. doi:10.1191/095968300676746202

    Article  Google Scholar 

  • Jeffries MO, Krouse HR, Shakur MA, Harris SA (1984) Isotope geochemistry of stratified Lake “A”, Ellesmere Island, N.W.T., Canada. Can J Earth Sci 21:1008–1017

    Google Scholar 

  • Knight J (1999) Morphology and palaeoenvironmental interpretation of deformed soft-sediment clasts: examples from within Late Pleistocene glacial outwash, Tempo Valley, Northern Ireland. Sediment Geol 128:293–306. doi:10.1016/S0037-0738(99)00080-9

    Article  Google Scholar 

  • Knight J (2005) Processes of soft-sediment clast formation in the intertidal zone. Sediment Geol 181:207–214. doi:10.1016/j.sedgeo.2005.09.004

    Article  Google Scholar 

  • Koerner RM, Fisher DA (1990) A record of Holocene summer climate from a Canadian high-Arctic ice core. Nature 343:630–631. doi:10.1038/343630a0

    Article  Google Scholar 

  • Lamoureux SF (1994) Embedding unfrozen lake sediments for thin section preparation. J Paleolimnol 10:141–146. doi:10.1007/BF00682510

    Article  Google Scholar 

  • Lamoureux SF (1999) Catchment and lake controls over the formation of varves in monomictic Nicolay Lake, Cornwall Island, Nunavut. Can J Earth Sci 36:1533–1546. doi:10.1139/cjes-36-9-1533

    Article  Google Scholar 

  • Lamoureux SF (2001) Varve chronology techniques. In: Last WM, Smol JP (eds) Developments in paleoenvironmental research (DEPR): tracking environmental change using lake sediments, volume 2: physical and chemical techniques. Kluwer Academic Publishers, Dordrecht, pp 247–260

    Google Scholar 

  • Lamoureux SF, Bradley RS (1996) A late Holocene varved sediment record of environmental change from northern Ellesmere Island, Canada. J Paleolimnol 16:239–255. doi:10.1007/BF00176939

    Article  Google Scholar 

  • Lamoureux SF, Gilbert R, Lewis T (2002) Lacustrine sedimentary environments in High Arctic proglacial Bear Lake, Devon Island, Nunavut, Canada. Arct Antarct Alp Res 34:130–141. doi:10.2307/1552464

    Article  Google Scholar 

  • Lasca AN (1997) Climate change from laminated sediments in the Canadian High Arctic. B.A. Unpublished thesis. Department of Geology, Bates College, Lewiston, Maine

  • Lyons TW (1997) Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim Cosmochim Acta 61:3367–3382. doi:10.1016/S0016-7037(97)00174-9

    Article  Google Scholar 

  • Lyons TW, Berner RA (1992) Carbon-sulfur-iron systematic of the uppermost deep-water sediments of the Black Sea. Chem Geol 99:1–27. doi:10.1016/0009-2541(92)90028-4

    Article  Google Scholar 

  • Lyons JB, Mielke JE (1973) Holocene history of a portion of northernmost Ellesmere Island. Arctic 26:314–323

    Google Scholar 

  • McKenna Neuman C (1990) Observations of winter aeolian transport and niveo-aeolian deposition at Crater Lake, Pangnirtung Pass, N.W.T., Canada. Permafr Periglac 1:235–247. doi:10.1002/ppp.3430010304

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) In: Last WM, Smol JP (eds) Developments in paleoenvironmental research (DEPR): tracking environmental change using lake sediments, volume 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, pp 239–269

    Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2003) Diatom response to recent climatic change in a High Arctic lake (Char Lake, Cornwallis Island, Nunavut). Global Planet Change 38:257–271. doi:10.1016/S0921-8181(02)00260-6

    Article  Google Scholar 

  • Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74. doi:10.1007/s00300-003-0580-2

    Article  Google Scholar 

  • Nedell SS, Andersen DW, Squyres SW, Love FG (1987) Sedimentation in ice-covered Lake Hoare, Antarctica. Sedimentology 34:1093–1106. doi:10.1111/j.1365-3091.1987.tb00594.x

    Article  Google Scholar 

  • Okulitch AV (1991) Geology of the Canadian Archipelago and North Greenland (map, 1:2,000,000). In: Trettin HP (ed) Geology of the Innuitian Orogen and Arctic platform of Canada and Greenland, Geological Survey of Canada, Geology of Canada Series 3. Geological Survey of Canada, Ottawa

    Google Scholar 

  • Ovenshine AT (1970) Observations of iceberg rafting in Glacier Bay, Alaska, and the identification of ancient ice-rafted deposits. Geol Soc Am Bull 81:891–894. doi:10.1130/0016-7606(1970)81[891:OOIRIG]2.0.CO;2

    Article  Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256. doi:10.1126/science.278.5341.1251

    Article  Google Scholar 

  • Paterson WSB, Koerner RM, Fisher D, Johnsen SJ, Clausen HB, Dansgaard W et al (1977) An oxygen-isotope climatic record from the Devon Island ice cap, Arctic Canada. Nature 266:508–511. doi:10.1038/266508a0

    Article  Google Scholar 

  • Priscu JC, Fritsen CH, Adams EE, Giovannoni SJ, Pearl HW, McKay CP et al (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095–2098. doi:10.1126/science.280.5372.2095

    Article  Google Scholar 

  • Reimnitz E, Kempema EW, Barnes PW (1987) Anchor ice, seabed freezing, and sediment dynamics in shallow Arctic seas. J Geophys Res 92:14671–14678. doi:10.1029/JC092iC13p14671

    Article  Google Scholar 

  • Retelle MJ (1986) Stratigraphy and sedimentology of coastal lacustrine basins, northeastern Ellesmere Island, N.W.T. Geogr Phys Quatern 40:117–128

    Google Scholar 

  • Retelle MJ, Child JK (1996) Suspended sediment transport and deposition in a High Arctic meromictic lake. J Paleolimnol 16:151–167. doi:10.1007/BF00176933

    Article  Google Scholar 

  • Säwström C, Mumford R, Marshall W, Hodson A, Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Google Scholar 

  • Serreze MC, Walsh JE, Chapin RSIII, Osterkamp T, Dyurgerov M, Romanovsky V et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207. doi:10.1023/A:1005504031923

    Article  Google Scholar 

  • Smith IR (2000) Diamictic sediments within High Arctic lake sediment cores: evidence for lake ice rafting along the lateral glacial margin. Sedimentology 47:1157–1179. doi:10.1046/j.1365-3091.2000.00347.x

    Article  Google Scholar 

  • Smith ND, Syvitski JPM (1982) Sedimentation in a glacier-fed lake: the role of pelletization on deposition of fine-grained suspensates. J Sediment Petrol 52:503–513

    Google Scholar 

  • Smith SV Jr, Bradley RS, Abbott MB (2004) A 300 year record of environmental change from Lake Tuborg Ellesmere Island, Nunavut, Canada. J Paleolimnol 32:137–148. doi:10.1023/B:JOPL.0000029431.23883.1c

    Article  Google Scholar 

  • Smol JP, Douglas MSV (2007) From controversy to consensus: making the case for recent climate change in the Arctic using lake sediments. Front Ecol Environ 5:466–474. doi:10.1890/1540-9295(2007)5[466:FCTCMT]2.0.CO;2

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A et al (2005) Climate-driven regime shifts in the biological communities of Arctic lakes. Proc Natl Acad Sci USA 102:4397–4402. doi:10.1073/pnas.0500245102

    Article  Google Scholar 

  • Sprowl D (1993) On the precision of the Elk Lake varve chronology. In: Bradbury JP, Dean WE (eds) Elk Lake, Minnesota: evidence for rapid climate change in the North-Central United States. Geol Soc Am Special Paper 276. Boulder, Colorado, pp 69–74

    Google Scholar 

  • Squyres SW, Andersen DW, Nedell SS, Wharton RA Jr (1991) Lake Hoare, Antarctica: Sedimentation through a thick perennial ice cover. Sedimentology 38:363–379. doi:10.1111/j.1365-3091.1991.tb01265.x

    Article  Google Scholar 

  • Tomkins JD (2008) Sedimentology and paleoenvironmental indicators in a High Arctic meromictic lake. Unpublished Ph.D. thesis. Department of Geography, Queen’s University, Kingston, Ontario

  • Tomkins JD, Antoniades D, Lamoureux SF, Vincent WF (2008) A simple and effective method for preserving the sediment-water interface of sediment cores during transport. J Paleolimnol 40:577–582 (in press)

    Google Scholar 

  • Van Hove P, Belzile C, Gibson JAE, Vincent WF (2006) Coupled landscape-lake evolution in High Arctic Canada. Can J Earth Sci 43:533–546. doi:10.1139/E06-003

    Article  Google Scholar 

  • Vincent AC, Mueller DR, Vincent WF (2008) Simulated heat storage in a perennially ice-covered High Arctic lake: Sensitivity to climate change. J Geophys Res-Oceans 113:C04036. doi:10.102912007JC004360

    Article  Google Scholar 

  • Vincent WF, Gibson JAE, Jeffries MO (2001) Ice-shelf collapse, climate change, and habitat loss in the Canadian High Arctic. Polar Rec (Gr Brit) 37:133–142

    Article  Google Scholar 

  • Vincent WF, Hobbie JE, Laybourn-Parry J Introduction to the limnology of high latitude lake and river ecosystems. In: Vincent WF, Laybourn-Parry J (eds) Polar Lakes and Rivers—Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford University Press, UK (in press)

  • Wharton RA Jr, McKay CP, Clow FD, Andersen DT (1993) Perennial ice covers and their influence on Antarctic lake ecosystems. Physical and Biogeochemical Processes in Antarctic Lakes. American Geophysical Union, Washington, DC, USA. Antarct Res Ser 59:53–70

    Google Scholar 

  • Yarincik KM, Murray RW, Lyons TW, Peterson LC, Haug GH (2000) Oxygenation history of bottom waters in the Cariaco Basin, Venezuela, over the past 578, 000 years: results from redox-sensitive metals (Mo, V, Mn, and Fe). Paleoceanography 15:593–604. doi:10.1029/1999PA000401

    Article  Google Scholar 

  • Zolitschka B (1996) Recent sedimentation in a High Arctic lake, northern Ellesmere Island, Canada. J Paleolimnol 16:169–186. doi:10.1007/BF00176934

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research Council of Canada, ArcticNet (a Canadian Network of Centres of Excellence), the Canada Research Chair program and the International Polar Year program. Logistical support from Polar Continental Shelf Project (Natural Resources Canada) and Parks Canada is gratefully acknowledged. Additional support from the Northern Scientific Training Program, Royal Canadian Geographical Society, Association of Canadian Universities for Northern Studies, Canadian Northern Studies Trust, Ontario Graduate Scholarship program, Queen’s University and le fonds québécois de la recherche sur la nature et les technologies is greatly appreciated. We also thank Jérémie Pouliot, Julie Veillette, Denis Sarrazin (Université Laval), Eric Bottos (McGill University) and John Ennis (United Helicopters) for their excellent field assistance. Dr. Raymond Bradley provided access to analyse thin sections created from previous studies of Lakes A, B, C1, C2 and C3, Dr. Derek Mueller (University of Alaska, Fairbanks) shared satellite imagery observations of lake ice extents and Dr. Claude Belzile (Université Laval) shared field observations. Constructive comments from Dr. Rod Smith (Geological Survey of Canada, Natural Resources Canada) and three anonymous reviewers improved this manuscript. This is Polar Continental Shelf Project contribution number 014-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica D. Tomkins.

Additional information

This is one of fourteen papers published in a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomkins, J.D., Lamoureux, S.F., Antoniades, D. et al. Sedimentary pellets as an ice-cover proxy in a High Arctic ice-covered lake. J Paleolimnol 41, 225–242 (2009). https://doi.org/10.1007/s10933-008-9255-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9255-x

Keywords

Navigation