Skip to main content

Advertisement

Log in

A 2000 year record of climate variations reconstructed from Haukadalsvatn, West Iceland

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The sediment fill of Haukadalsvatn, a lake in northwest Iceland, preserves a record of environmental change since deglaciation, 13 ka ago. The rapid sedimentation rate over the past 2 ka (ca. 4 m ka−1) provides a high-resolution archive of late Holocene environmental change. Physical and chemical environmental proxies extracted from cores from the Haukadalsvatn sediment fill provide a reconstruction of sub-decadal-scale climate variability in Iceland over the past 2 ka. Over this interval biogenic silica (BSi) reflects warm April–May temperatures, whereas total organic carbon (TOC) peaks represent an increased flux of carbon to the lake from eolian-derived soil erosion following periods of cold summers accompanied by dry, windy winters. The proxy-based temperature reconstructions show a broad interval of warmth through Medieval times, but this warmth is punctuated by multi-decadal cold intervals. The transition into the Little Ice Age occurred in two steps, with initial summer cooling 1250–1300 AD, and a more severe drop in summer temperatures between 1450 and 1500 AD; both are periods of severe explosive volcanism. Multi-decadal patterns of cold and warm conditions have some characteristics of a North Atlantic Oscillation (NAO)-like signal, but instrumental records and proxy-based reconstructions of the NAO index contain little power in the frequencies most strongly expressed in our data set. Although severe soil erosion in Iceland is frequently equated with settlement, our reconstructions indicate that soil erosion began several centuries before settlement, whereas for several centuries after settlement, when summer temperatures were relatively high, there was little or no soil erosion. Only during the transition into and during the Little Ice Age did soil erosion become a major feature of the record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbott MB, Stafford TWJ (1996) Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quat Res 45:300–311. doi:10.1006/qres.1996.0031

    Article  Google Scholar 

  • Ammann C, Joos F, Schimel D, Otto-Bliesner B, Tomas R (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci USA 104:3713–3718. doi:10.1073/pnas.0605064103

    Article  Google Scholar 

  • Anderson RK, Miller GH, Briner JP, Lifton NA, DeVogel SB (2008) A millennial perspective on Arctic warming from 14C in quartz and plants emerging from beneath ice caps. Geophys Res Lett 35:L01502. doi:10.1029/2007GL032057

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments. Kluwer Academic Publishers, Dordrecht, pp 1–33

    Google Scholar 

  • Arnalds O (2000) The Icelandic “rofabard” soil erosion features. Earth Surf Proc Land 25:17–28. doi:10.1002/(SICI)1096-9837(200001)25:1<17::AID-ESP33>3.0.CO;2-M

    Article  Google Scholar 

  • Arnalds O (2004) Volcanic soils of Iceland. Catena 56:3–20. doi:10.1016/j.catena.2003.10.002

    Article  Google Scholar 

  • Arnalds O, Gretarsson E (2001) Soil map of Iceland. Agricultural Research Institute, Reykjavik

    Google Scholar 

  • Axford Y, Geirsdóttir Á, Miller GH, Langdon P (2008) Climate of the “Little Ice Age” and the last 2000 years in northeastern Iceland inferred from chironomids and other lake sediment proxies. J Paleolimnol. doi:10.1007/s10933-008-9251-1

    Google Scholar 

  • Black J (2008) Holocene climate change in south central Iceland: a multiproxy lacustrine record from glacial lake Hvitarvatn. Unpublished PhD thesis, University of Colorado, Boulder

  • Broecker WS (2000) Was a change in thermohaline circulation responsible for the Little Ice Age? Proc Natl Acad Sci USA 97:1339–1342. doi:10.1073/pnas.97.4.1339

  • Conley DJ, Schelske CL (2002) Tracking environmental change using lake sediments terrestrial, algal, and siliceous indicators. In: Smol JP, Birks HJB, Last WM, Bradley RS, Alverson K (eds) Developments in paleoenvironmental research. Springer, Netherlands, pp 281–293

    Google Scholar 

  • Curry R, Mauritzen C (2005) Dilution of the northern North Atlantic Ocean in recent decades. Science 308:1772–1774. doi:10.1126/science.1109477

    Article  Google Scholar 

  • Dugmore A, Buckland P (1991) Tephrochronology and late Holocene soil erosion in South Iceland. In: Maizels JK, Caseldine C (eds) Environmental change in Iceland: past and present. Kluwer Academic Publishers, Dordrecht, pp 147–159

    Google Scholar 

  • Dugmore AJ, Erskine CC. (1994) Local and regional patterns of soil erosion in southern Iceland. In: Stotter J, Wilhelm F (eds) Environmental change in Iceland. Munchener Geographische Abhandlungen Reihe B, Band B12, pp 63–78

  • Eakins JD, Morrison RT (1976) A New procedure for the determination of lead-210 in lake and marine sediments. AERE Report No. 8475. H.M.S.O., London

  • Eiríksson J, Larsen G, Knudsen K-L, Heinemeier J, Símonarson L (2004) Marine reservoir age variability and water mass distribution in the Iceland Sea. Quat Sci Rev 23:2247–2268. doi:10.1016/j.quascirev.2004.08.002

    Article  Google Scholar 

  • Eiriksson J, Bartels-Jónsdóttir HB, Cage AG, Gudmundsdóttir ER, Kligaard-Kristensen D, Marret F, Rodrigues T, Abrantes F, Austin WEN, Jiang H, Knudsen K-L, Sejrup H-P (2006) Variability of the North Atlantic Current during the last 2000 years based on shelf bottom water and sea surface temperatures along an open ocean/shallow marine transect in western Europe. Holocene 16:1017–1029. doi:10.1177/0959683606hl991rp

    Article  Google Scholar 

  • Gao C, Robock A, Self S, Witter JB, Steffenson JP, Clausen HB, Siggaard-Andersen M-L, Johnsen S, Mayewski PA, Ammann C (2006) The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: greatest volcanic sulfate event of the past 700 years. J Geophys Res 111:D12107. doi:10.1029/2005JD006710

    Article  Google Scholar 

  • Geirsdóttir Á, Miller GH, Axford Y, Ólafsdóttir S Holocene and latest Pleistocene climate and glacier fluctuations in Iceland. Quat Sci Rev (in press)

  • Gerrard JM (1991) An assessment of some of the factors involved in recent landscape change in Iceland. In: Maizels JK, Caseldine C (eds) Environmental change in Iceland: past and present. Kluwer Academic Publishers, Dordrecht, pp 237–253

    Google Scholar 

  • Giraudeau J, Jennings AE, Andrews JT (2004) Timing and mechanisms of surface and intermediate water circulation changes in the Nordic Seas over the last 10, 000 cal years: a view from the North Iceland shelf. Quat Sci Rev 23:2127–2139. doi:10.1016/j.quascirev.2004.08.011

    Article  Google Scholar 

  • Glew JR (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287. doi:10.1007/BF00200351

    Article  Google Scholar 

  • Grönvold K, Óskarsson N, Johnsen S, Clausen HB, Hammer CU, Bard E (1995) Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land sediments. Earth Planet Sci Lett 135:149–155. doi:10.1016/0012-821X(95)00145-3

    Article  Google Scholar 

  • Hallsdóttir M (1995) On the pre-settlement history of Icelandic vegetation. Búvísindi 9:17–29

    Google Scholar 

  • Haflidason H, Eiriksson J, van Kreveld S (2000) The tephrochronology of Iceland and the North Atlantic region during the Middle and Late Quaternary: a review. J Quat Sci 15:3–22. doi:10.1002/(SICI)1099-1417(200001)15:1<3::AID-JQS530>3.0.CO;2-W

    Article  Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618. doi:10.1191/0959683605hl836rr

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi:10.1126/science.269.5224.676

    Article  Google Scholar 

  • Hurrell JW, Kushnir Y, Visbeck M (2001) The North Atlantic oscillation. Science 291:603–605. doi:10.1126/science.1058761

    Article  Google Scholar 

  • Jackson MG, Oskarsson N, Trønnes RG, McManus JF, Oppo DW, Grönvold K, Hart SR, Sachs JP (2005) Holocene loess deposition in Iceland: evidence for millennial-scale atmosphere-ocean coupling in the North Atlantic. Geology 33:509–512. doi:10.1130/G21489.1

    Article  Google Scholar 

  • Jennings AE, Hagen S, Hardardottir J, Stein R, Ogilvie AEJ, Jónsdottir I (2001) Oceanographic change and terrestrial human impacts in a post A.D. 1400 sediment record from the southwest Iceland shelf. Clim Change 48:83–100. doi:10.1023/A:1005658620319

    Article  Google Scholar 

  • Jóhannesson H (1997) Yfirlit um jarðfræði hálendis Mýrasýslu og yfir til Dala. In: Grímsdóttir GÁ, Björnsson Á (eds) Í fjallhögum milli Mýra og Dala. Árbók Ferðafélag Íslands, Reykjavík, pp 215–226

    Google Scholar 

  • Jóhannsdóttir GE (2007) Mid-Holocene to late glacial tephrochronology in West Iceland as revealed in three lacustrine environments. Unpublished MS thesis, University of Iceland

  • Knudsen K-L, Eiriksson J, Jansen E, Jiang H, Rytter F, Gudmundsdóttir ER (2004) Paleoceanographic changes off North Iceland through the last 1200 years: foraminifera, stable isotopes, diatoms and ice rafted debris. Quat Sci Rev 23:2231–2246. doi:10.1016/j.quascirev.2004.08.012

    Article  Google Scholar 

  • Langdon PD, Holmes N, Caseldine CJ (2008) Environmental controls on mdern chironomid faunas from NW Iceland and implications for reconstructing climate change. J Paleolimnol 40:273–293. doi:10.1007/s10933-007-9157-3

    Article  Google Scholar 

  • Lawson IT, Gathorne-Hardy FJ, Church MJ, Newton AJ, Edwards KJ, Dugmore AJ, Einarsson Á (2007) Environmental impacts of the Norse settlement: palaeoenvironmental data from Mývatnssveit, northern Iceland. Boreas 36:1–19. doi:10.1080/03009480600827298

    Article  Google Scholar 

  • Mann ME, Jones PD (2003a) 2, 000 Year Hemispheric Multi-proxy Temperature Reconstructions, IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series #2003-051. NOAA/NGDC Paleoclimatology Program, Boulder, CO, USA

    Google Scholar 

  • Mann ME, Jones PD (2003b) Global surface temperatures over the past two millennia. Geophys Res Lett 30. doi:10.1029/2003GL017814

  • McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophys Res Lett 35. doi:10.1029/2007GL032876

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. doi:10.1016/0009-2541(94)90059-0

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250. doi:10.1016/S0146-6380(97)00049-1

    Article  Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617. doi:10.1038/nature03265

    Article  Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res Part A 36:1415–1426. doi:10.1016/0198-0149(89)90092-7

    Article  Google Scholar 

  • Muhs DR, Ager TA, Been JM, Rosenbaum JG, Reynolds RL (2000) An evaluation of methods for identifying and interpreting buried soils in late Quaternary loess in Alaska. U.S. Geological Survey Professional Paper 1615:127–146

    Google Scholar 

  • Nielsen CH, Sigurdsson H (1981) Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses. Am Mineral 66:547–552

    Google Scholar 

  • Ogilvie AEJ (1992) Documentary evidence for changes in the climate of Iceland, A.D. 1500 to 1800. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 92–117

  • Óskarsson H, Arnalds Ó, Gudmundsson J, Gudbergsson G (2004) Organic carbon in Icelandic Andosols: geographical variation and impact of erosion. Catena 56:225–238. doi:10.1016/j.catena.2003.10.013

    Article  Google Scholar 

  • Prokopenko A, Wiliams DF, Kavel P, Karabanov E (1993) The organic indexes in the surface sediments of Lake Baikal water system andprocesses controlling their variation. IPPCCE Newsl 7:49–55

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1059

    Google Scholar 

  • Rieger et al (1979) Exploaratory soil survey of Alaska. USDA-Soil Conservation Service, 213 pp

  • Roger JC, van Loon H (1979) The seesaw in winter temperature between Greenland and northern Europe. Part II: Some oceanic and atmospheric effects in middle and high latitudes. Mon Wea Rev 107:509–519. doi:10.1175/1520-0493(1979)107<0509:TSIWTB>2.0.CO;2

    Article  Google Scholar 

  • Ryves DB, Battarbee RW, Juggins S, Fritz SC, Anderson NJ (2006) Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnol Oceanogr 51:1355–1368

    Google Scholar 

  • Serreze MC (1995) Climatological aspects of cyclone developmentand decay in the Arctic. Atmos Oceans 33:1–23

    Google Scholar 

  • Serreze MC, Francis JA (2006) The arctic amplification debate. Clim Change 76:241. doi:10.1007/s10584-005-9017-y

    Article  Google Scholar 

  • Sicre M-A, Jacob J, Ezat U, Rousse S, Kissel C, Laj C, Eiríksson J, Yiou P, Knudsen KL, Jansen E, Turon J-L (2008) Decadal variability of sea surface temperatures off North Icelandover the last 2000 years. Earth Planet Sci Lett 268:137–142. doi:10.1016/j.epsl.2008.01.011

    Article  Google Scholar 

  • Thorarinsson S (1944) Tefrokronologiska studier på Island. Munksgaard, Copenhagen

    Google Scholar 

  • Thorarinsson S (1961) Uppblástur á Íslandi í ljósi öskulagarannsókna (Wind erosion in Iceland, A tephrochronological study). Ársrit Skógræktarfélags Íslands, pp 17–54

  • Thordarson Th, Self S (2003) Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J Geophys Res 108(D1):4011. doi:10.1029/2001JD002042

    Article  Google Scholar 

  • van Loon H, Rogers JC (1978) The seesaw in winter temperatures between Greenland and northern Europe. Part I: General description. Mon Wea Rev 106:296–310. doi:10.1175/1520-0493(1978)106<0296:TSIWTB>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

Recovery of sediment cores in 2003 was made possible using DOSECC’s GLAD 200 coring system. We thank especially Thorsteinn Jónsson, Sveinbjörn Steinthórsson, and Doug Schnurrenberger for assistance and the US National Science Foundation (OPP-0138010) and the Icelandic Centre of Research, RANNIS (#040233021) for support. Gudrun E. Jóhannsdóttir and Saedis Ólafsdóttir measured TOC at the carbon coulometer of the University of Iceland. F.-S. Hu at the University of Illinois, and D. Kaufman and C. Schiff at Northern Arizona University provided BSi analyses. C:N and isotopes in organic matter were analyzed by M. Wooller at the University of Alaska. The University of Colorado Radiocarbon Laboratory prepared 14C samples under the direction of S. Lehman. D. Engstrom measured 210Pb and 137Cs at the St. Croix Watershed Research Station, MN. The analytical program was supported by a RANNIS Grant of Excellence (2002–2004, #022160002-4) and Project Grant #040233021, the US NSF grant ARC-0455025, and the Science Fund of the University of Iceland. A Fulbright scholar grant to Geirsdóttir is gratefully acknowledged. Scott Lehmann and Yarrow Axford are thanked for valuable and insightful discussions. We are grateful for the constructive reviews of D. Kaufman, D. Muhs and three anonymous reviewers. This work is a contribution to the NSF-ARCSS collaborative project “A synthesis of the last 2000 years of climatic variability from Arctic lakes”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Áslaug Geirsdóttir.

Additional information

This is one of fourteen papers published in a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

JPEG (125 kb)

JPEG (68 kb)

JPEG (27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geirsdóttir, Á., Miller, G.H., Thordarson, T. et al. A 2000 year record of climate variations reconstructed from Haukadalsvatn, West Iceland. J Paleolimnol 41, 95–115 (2009). https://doi.org/10.1007/s10933-008-9253-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9253-z

Keywords

Navigation