Journal of Paleolimnology

, Volume 41, Issue 3, pp 471–490 | Cite as

Contrasted Late Glacial and Holocene hydrology of Sarliève paleolake (France) from sediment geometry and detrital versus biochemical composition

  • Agathe Fourmont
  • Jean-Jacques Macaire
  • Jean-Gabriel Bréhéret
Original Paper

Abstract

Since the end of the Last Glacial Maximum, hydrology in Europe has been influenced by both climate changes, and since Neolithic times, an increase in human activity. Paleohydrological reconstructions, especially from lake studies, can help identify the respective impact of these two factors. The present work focuses on a lacustrine geosystem, the Sarliève paleolake in the Massif Central (France), in an unusually dry, temperate area. The lake sediment geometry (core drillings, geotechnical methods), and the geochemical and mineralogical characterization of the catchment rocks and soils, and of the lacustrine deposits, indicate major variations in paleohydrology during the last 12,000 years as dated by 14C, palynology and tephrochronology. In addition, a model quantifying detrital versus biochemical lacustrine components was developed to identify hydrological trends. The data show that the Sarliève area was characterized mainly by remarkably dry conditions, hence sharpening the climatic trends at middle latitudes in Western Europe. Three main hydrological phases are distinguished since the Late Glacial: (1) 13.7–7.5 ka cal BP, a dominant dry climate, with a peak at ca. 8 ka cal BP, leading to a lowstand in water level and unusual mineral authigenesis, zeolite then dolomite, constituting up to 60% of the lacustrine sediments; (2) 7.5 to ca. 5.3 ka cal BP, repeated short-duration hydrological alternations that could have been climate-driven: lowstands in water level with up to 60% biochemical minerals versus higher water levels with <10% biochemical minerals; (3) 5.3 ka cal BP to the Middle Ages (i.e. beginning in the 5th century AD), a hydrological trend towards perennial high water level, with mainly detrital sediments, probably linked to climate evolution, except periods of obvious human-driven drying during the last two millennia.

Keywords

Paleohydrology Paleoclimate Holocene Lacustrine sediments Human activity 

References

  1. Aaby B (1976) Cyclic climatic variations in climate over the past 5,500 yr reflected in raised bogs. Nature 263:281–284. doi:10.1038/263281a0 CrossRefGoogle Scholar
  2. Alley RB, Agustsdottir AM (2005) The 8 k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24:1123–1149. doi:10.1016/j.quascirev.2004.12.004 CrossRefGoogle Scholar
  3. Anadon P, Cabrera L, Kelts K (1991) Lacustrine facies analysis. International Association of Sedimentologists (I.A.S.) Special Publication No. 13. Blackwell Scientific Publications, OxfordGoogle Scholar
  4. Anderson DE (1997) Younger Dryas research and its implications for understanding abrupt climatic change. Prog Phys Geogr 21:230–249. doi:10.1177/030913339702100203 CrossRefGoogle Scholar
  5. Andrews JE (2006) Palaeoclimatic records from stable isotopes in riverine tufas: synthesis and review. Earth Sci Rev 75:85–104. doi:10.1016/j.earscirev.2005.08.002 CrossRefGoogle Scholar
  6. Argant J, Cubizolle H (2005) L’évolution holocène de la végétation des monts de la Madelaine, du Forez, du Livradois et du Pilat (Massif central oriental, France): l’apport d’une nouvelle série d’analyses palynologiques. Quaternaire 16:119–142Google Scholar
  7. Ballut C (2000) Evolution environnementale de la Limagne de Clermont-Ferrand au cours de la seconde moitié de l’Holocène (Massif central français). PhD thesis, University of Clermont-FerrandGoogle Scholar
  8. Barber KE, Chambers FM, Maddy D, Stoneman R, Brew JS (1994) A sensitive high-resolution record of Late Holocene climatic change from a raised bog in northern England. Holocene 4:198–205. doi:10.1177/095968369400400209 CrossRefGoogle Scholar
  9. Bertran P (2004) Soil erosion in small catchments of the Quercy region (southwestern France) during the Holocene. Holocene 14:597–606. doi:10.1191/0959683604hl737rp CrossRefGoogle Scholar
  10. Bertran P, Fabre L, Franc O, Limondin-Lozouet N, Thièbaut S (1998) Évolution d’un versant au cours de l’Holocène à Vaise (France). Géographie physique et Quaternaire 52, on line: http://www.erudit.org/revue/gpq/1998/v52/n1/index.html
  11. Bond G, Kromer B, Muscheler R, Evans MN, Showers W, Hoffmann S et al (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136. doi:10.1126/science.1065680 CrossRefGoogle Scholar
  12. Bornand M, Callot G, Favrot JC, Servat E (1968) Les sols du Val d’Allier. INRA Service d’Etude des sols, MontpellierGoogle Scholar
  13. Bréhéret JG, Fourmont A, Macaire JJ, Négrel P (2008) Microbially mediated carbonates in the Holocene deposits from Sarliève, a small ancient lake of the French Massif Central, testify to the evolution of a restricted environment. Sedimentology 55:557–578. doi:10.1111/j.1365-3091.2007.00912.x CrossRefGoogle Scholar
  14. Carrion JS (2002) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 2:2047–2066. doi:10.1016/S0277-3791(02)00010-0 CrossRefGoogle Scholar
  15. Chamley H (1989) Clay sedimentology. Springer-Verlag, HeidelbergGoogle Scholar
  16. Dearing JA, Foster IDL (1986) Lake sediments and palaeohydrological studies. In: Berglund B (ed) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, pp 67–90Google Scholar
  17. De Beaulieu JL, Pons A, Reille M (1988) Histoire de la flore et de la végétation du Massif Central (France) depuis la fin de la dernière glaciation. Cahier Micropaleontologie 3:5–36Google Scholar
  18. De Göer de Herve A, Boivin P, Camus G, Gourgand A, Kieffer G, Mergoil J, Vincent PM (1991) Volcanologie de la Chaîne des Puys - Livret de la carte géologiqueGoogle Scholar
  19. Derruau M (1949) La grande Limagne auvergnate et bourbonnaise, Etude géographique. Thesis, University of GrenobleGoogle Scholar
  20. Détriché S, Bréhéret JG, Zarki H, Karrat L, Macaire JJ, Fontugne M (2008) Late Holocene palaeohydrology of lake Afourgagh (Middle-Atlas, Morocco) from deposit geometry and facies. Bull Soc Geol Fr 179:41–50. doi:10.2113/gssgfbull.179.1.41 CrossRefGoogle Scholar
  21. Digerfeldt G (1986) Studies on past lake-level fluctuations. In: Berglund B (ed) Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester, pp 127–143Google Scholar
  22. Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88. doi:10.1111/j.1574-6941.1998.tb00494.x CrossRefGoogle Scholar
  23. Douglas R, Gonzalez-Yajimovich O, Ledesma-Vazquez J, Staines-Urias F (2007) Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California. Quat Sci Rev 26:115–129. doi:10.1016/j.quascirev.2006.05.003 CrossRefGoogle Scholar
  24. Folk RL (1999) Nannobacteria and the precipitation of carbonate in unusual environments. Sediment Geol 126:47–55. doi:10.1016/S0037-0738(99)00031-7 CrossRefGoogle Scholar
  25. Fourmont A (2005) Quantification de l’érosion et de la sédimentation dans le bassin de Sarliève (Massif central, France) au Tardiglaciaire et à l’Holocène. Impact des facteurs naturels et anthropiques. PhD thesis, University of ToursGoogle Scholar
  26. Fourmont A, Macaire JJ, Bréhéret JG, Argant J, Prat B, Vernet G (2006) Tephras in lacustrine sediments of the Sarliève marsh (French Massif Central): age and preservation. C R Geosci 338:1141–1149. doi:10.1016/j.crte.2006.09.013 CrossRefGoogle Scholar
  27. Fournier G (1996) Sarliève: un lac au moyen âge. Assoc Site Gergovie 11:2–34Google Scholar
  28. Gachon L (1963) Contribution à l’étude du quaternaire récent de la Grande Limagne marno-calcaire: morphogenèse et pédogenèse. Thesis, University of Clermont-FerrandGoogle Scholar
  29. Gasse F, Fontes JC, Plaziat JC, Carbonel P, Kaszmarska I, De Deckker P et al (1987) Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara. Palaeogeogr Palaeocl 60:1–46. doi:10.1016/0031-0182(87)90022-8 CrossRefGoogle Scholar
  30. Gregory KJ, Maizels JK (1991) Morphology and sediments: typological characteristics of fluvial forms and deposits. In: Starkel L, Gregory KJ, Thornes JB (eds) Temperate Palaeohydrology. Wiley, Chichester, pp 30–59Google Scholar
  31. Guenet P, Reille M (1988) Analyse pollinique du lac-tourbière de Chambedaze (Massif Central, France) et datation de l’explosion des plus jeunes volcans d’Auvergne. B Assoc Fr Etud Quatern 4:175–194Google Scholar
  32. Håkanson L, Jansson M (1983) Principles of lake sedimentology. Springer Verlag, HeidelbergGoogle Scholar
  33. Harrison S, Digerfeldt G (1993) European lakes as palaeohydrological and palaeoclimatic indicators. Quat Sci Rev 12:233–248. doi:10.1016/0277-3791(93)90079-2 CrossRefGoogle Scholar
  34. Harrison SP, Metcalfe SE (1985) Variations in lake levels during the Holocene in North America: an indicator of changes in atmospheric circulation pattern. Geogr Phys Quatern 39:141–150Google Scholar
  35. Harrison SP, Prentice IC, Guiot J (1993) Climatic controls on Holocene lake-level changes in Europe. Clim Dyn 8:189–200. doi:10.1007/BF00207965 CrossRefGoogle Scholar
  36. Hay RL (1966) Zeolite and zeolitic reactions in sedimentary rocks. Geol Soc Am Bull 85:130Google Scholar
  37. Hinschberger F, Fourmont A, Macaire JJ, Bréhéret JG, Guérin R (2006) Contribution of geophysical surveys to the study of fine grained lacustrine sediments. Application to the Sarliève marsh (Massif Central, France). Bull Soc Geol Fr 177:311–322. doi:10.2113/gssgfbull.177.6.311 CrossRefGoogle Scholar
  38. Hughes PD, Mauquoy D, Barber KE, Langdon PG (2000) Mire development pathways and paleoclimatic records from a full Holocene peat archive at Walton Moss, Sumbria, England. Holocene 10:465–479. doi:10.1191/095968300675142023 CrossRefGoogle Scholar
  39. Jeambrun M, Aubert M, Bouiller R, Camus G, Cochet A, d’Arcy D, Giot D, Baudry D, Roche A, Bonhommet N (1973) Carte géologique à 1/50000 de Clermont-Ferrand XXV-31Google Scholar
  40. Johnsen SJ, Clausen HB, Dansgaard W, Fuhrer K, Gundestrup NS, Hammer CU et al (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359:311–313. doi:10.1038/359311a0 CrossRefGoogle Scholar
  41. Jones BF, Bowser HP (1978) The mineralogy and related chemistry of lake sediments. In: Lerman A (ed) Lakes: chemistry, geology,physics. Springer Verlag, New York, pp 179–235Google Scholar
  42. Kessler J, Chambraud A (1986) La météo de la France. Tous les climats localité par localité. Lattès JCGoogle Scholar
  43. Lamb HF, Eicher U, Switsur VR (1989) An 18000-year record of vegetation, lake-level and climatic change from Tigalmamine, Middle-Atlas, Morocco. J Biogeogr 16:65–74. doi:10.2307/2845311 CrossRefGoogle Scholar
  44. Lang A, Hönscheidt S (1999) Age and source of colluvial sediments at Vaihingen-Enz, Germany. Catena 38:89–107. doi:10.1016/S0341-8162(99)00068-5 CrossRefGoogle Scholar
  45. Lemoalle J, Dupont B (1973) Iron bearing oolites and the present conditions and the present conditions of iron sedimentation in lake Chad (Africa). In: Amstutz G, Bernard AJ (eds) Ores in sediments. Springer, Berlin, pp 167–178Google Scholar
  46. Lenselink G, Kroonenberg SB, Loison G (1990) Pleniglacial to Holocene paleo-environments in the Artière basin in the western Limagne rift valley, Massif Central, France. Quaternaire 2:139–156Google Scholar
  47. Lezine AM, Casanova J (1991) Correlated oceanic and continental records demonstrate past climate and hydrology of North Africa (0–140 ka). Geology 19:307–310. doi :10.1130/0091-7613(1991)019<0307:COACRD>2.3.CO;2CrossRefGoogle Scholar
  48. Macaire JJ, Bernard J, Di-Giovanni C, Hinschberger F, Limondin-Lozouet N, Visset L (2006) Quantification and regulation of organic and mineral sedimentation in a Late Holocene floodplain as a result of climatic and human impacts (the Taligny marsh, Parisian Basin, France). Holocene 16:647–660. doi:10.1191/0959683606hl961rp CrossRefGoogle Scholar
  49. Macklin MG (1999) Holocene river environments in prehistoric Britain: human interaction and impact. Quatern Proc 7:521–530. doi :10.1002/(SICI)1099-1417(199910)14:6<521::AID-JQS487>3.0.CO;2-GCrossRefGoogle Scholar
  50. Macklin MG, Benito G, Gregory KJ, Johnstone E, Lewin J, Michczynska DJ et al (2006) Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 66:145–154. doi:10.1016/j.catena.2005.07.015 CrossRefGoogle Scholar
  51. Magny M (1992) Holocene lake level fluctuations in Jura and the northern subalpine ranges, France: regional pattern and climatic implications. Boreas 21:319–334Google Scholar
  52. Magny M (1993) Holocene fluctuations of lake-level in the French Jura and Subalpine ranges, and their implications for past general circulation pattern. Holocene 3:319–334. doi:10.1177/095968369300300402 CrossRefGoogle Scholar
  53. Magny M (1998) Reconstruction of Holocene lake-level changes in the Jura (France): methods and results. In: Harrison SP, Frenzel B, Huckried U, Weiss M (eds) Palaeohydrology as reflected in lake-level changes as climatic evidences for Holocene times. Paläoklimaforschung, Stutgart, pp 67–85Google Scholar
  54. Magny M (2001) Palaeohydrological changes as reflected by lake-level fluctuations in the Swiss Plateau, the Jura Mountains and the northern French Pre-Alps during the last Glacial-Holocene transition: a regional synthesis. Global Planet Change 30:58–101. doi:10.1016/S0921-8181(01)00080-7 CrossRefGoogle Scholar
  55. Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary Int 113:65–79. doi:10.1016/S1040-6182(03)00080-6 CrossRefGoogle Scholar
  56. Magny M, Ruffaldi P (1995) Younger Dryas and early Holocene lake-level fluctuations in the Jura mountains, France. Boreas 24:155–172Google Scholar
  57. Magny M, Leuzinger U, Bortenschlager S, Haas JN (2006) Tripartite climate reversal in central Europe 5600–5300 years ago at Arbon-Bleiche, Switzerland. Quat Res 65:3–19. doi:10.1016/j.yqres.2005.06.009 CrossRefGoogle Scholar
  58. Miallier D, Sanzelle S, Pilleyre T, Vernet G, Brugière S, Danhara T (2004) Nouvelles données sur le téphra de Sarliève et le téphra CF7, marqueurs chronostratigraphiques de Grande Limagne (Massif Central, France). C R Geosci 336:1–8. doi:10.1016/j.crte.2003.10.017 CrossRefGoogle Scholar
  59. Michel R (1948) Etude géologique du plateau de Gergovie. Mémoire des Sociétés d’histoire naturelle d’Auvergne 4:1–68Google Scholar
  60. Millot G (1964) Géologie des argiles. Masson, ParisGoogle Scholar
  61. Morange A, Heritier F, Villemin J (1971) Contribution de l’exploration pétrolière à la connaissance structurale et sédimentaire de la Limagne, dans le Massif Central. In Plein Air (ed) Symposium Jung J, Clermont FerrandGoogle Scholar
  62. Müller G, Förstner U (1973) Recent iron ore formation in lake Malawi Africa. Mineral deposits 8:278–290Google Scholar
  63. Müller G, Irion G, Förstner U (1972) Formation and diagenesis of inorganic Ca–Mg carbonates in the lacustrine environment. Naturwissenschaften 59:158–164. doi:10.1007/BF00637354 CrossRefGoogle Scholar
  64. Nemec W, Stell RJ (1988) What is a fan delta and how do we recognize it? In: Nemec W, Steel RJ (eds) Fan delta: sedimentology and tectonic settings. Blakie and Son, Glasgow, pp 3–13Google Scholar
  65. Peteet D (1995) Global Younger Dryas? Quaternary Int 28:93–104. doi:10.1016/1040-6182(95)00049-O CrossRefGoogle Scholar
  66. Petit-Maire N, Riser J (1981) Holocene lake deposits and paleoenvironments in central Sahara, northeastern Mali. Palaeogeogr Palaeocl 35:45–61. doi:10.1016/0031-0182(81)90093-6 CrossRefGoogle Scholar
  67. Rachocki AH (1981) Alluvial fans. Wiley, New YorkGoogle Scholar
  68. Revel JC, Rouaud M (1985) Mécanismes et importance des remaniements dans le Terrefort toulousain (Bassin aquitain, France). Pedologie (Gent) XXXV-2:171–189Google Scholar
  69. Servant M, Servant S (1983) Paleohydrology of an upper quaternary lake in Chad. In: Carmouze JP, Durand JR, Lévèque D (eds) Lake Chad. Junk, The Hague, pp 11–26Google Scholar
  70. Sheppard RA, Gude AJ (1968) Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, California. U.S. Geol Surv 597:1–38Google Scholar
  71. Sheppard RA, Gude AJ (1969) Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California. U.S. Geol Surv 830:1–35Google Scholar
  72. Sheppard RA, Gude AJ (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona. U.S. Geol Surv 830:1–36Google Scholar
  73. Singer A, Stoffers P (1980) Clay mineral diagenesis in two east african lake sediments. Clay Miner 15:291–307. doi:10.1180/claymin.1980.015.3.09 CrossRefGoogle Scholar
  74. Street-Perrott FA, Roberts N (1983) Fluctuations in closed-basin lakes as indicator of past atmospheric circulation patterns. In: Street-Perrott FA, Beran M, Ratcliffe R (eds) Variations in the global water budget, Dordrecht, pp 331–341Google Scholar
  75. Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA et al (1998) INTCAL98 Radiocarbon age calibration, 24 000–0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  76. Sunborg A, Janson M (1991) Hydrology of rivers and river regimes. In: Starkel L, Gregory KJ, Thornes JB (eds) Temperate Palaeohydrology. Wiley, Chichester, pp 13–29Google Scholar
  77. Surdam RC, Eugster HP (1976) Mineral reactions in the sedimentary deposits of the Lake Magadi Region, Kenya. Geol Soc Am Bull 87:1739–1752. doi :10.1130/0016-7606(1976)87<1739:MRITSD>2.0.CO;2CrossRefGoogle Scholar
  78. Surdam RC, Parker RD (1972) Authigenic aluminosilicate minerals in the tuffaceous rocks of the Green River formation, Wyoming. Geol Soc Am Bull 83:689–700. doi:10.1130/0016-7606(1972)83[689:AAMITT]2.0.CO;2 CrossRefGoogle Scholar
  79. Teruggi ME (1964) A new and important occurence of sedimentary analcime. J Sediment Petrol 34:761–767Google Scholar
  80. Tettenhorst R, Moore GJ (1978) Stevensite oolites from the Green River Formation of central Utah. J Sediment Petrol 48:587–594Google Scholar
  81. Thompson JB (2000) Microbial whitings. In: Ridings RE, Awramik SM (eds) Microbial sediments. Springer-Verlag, Berlin, pp 251–260Google Scholar
  82. Thompson JB, Ferris FG, Smith DA (1997) Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. Palaios 5:52–75. doi:10.2307/3514996 CrossRefGoogle Scholar
  83. Trément F, Argant J, Bréhéret JG, Cabanis M, Dousteyssier B, Fourmont A et al (2007) Un ancien lac au pied de l’oppidum de Gergovie: interactions sociétés-milieux dans le bassin versant de Sarliève à l’Holocène. Gallia 64:289–351Google Scholar
  84. Van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003) Sulphate-reducing bacteria induces low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79. doi:10.1046/j.1472-4669.2003.00003.x CrossRefGoogle Scholar
  85. Vasconcelos C, McKenzie J (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res 67:378–390Google Scholar
  86. Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 337:220–222. doi:10.1038/377220a0 CrossRefGoogle Scholar
  87. Vernet G (2005) Rapport final d’opération de diagnostic et de fouille archéologique, bassin de Sarliève, Grande Halle d’Auvergne (Cournon, Pérignat-les-Sarliève et Aubière; Puy-de-Dôme), 3 tomes, Inrap, Direction Inter régionale Rhône-Alpes/Auvergne, Centre archéologique régional d’AuvergneGoogle Scholar
  88. Vernet G, Raynal JP (1995) La téphra des Roches, marqueur du volcanisme contemporain de la fin du Magdalénien dans le Massif central français. C R Geosci 321:713–720Google Scholar
  89. Wright D (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol 126:147–157. doi:10.1016/S0037-0738(99)00037-8 CrossRefGoogle Scholar
  90. Yu G, Harrison S (1995) Holocene changes in atmospheric circulation patterns as shown by changes in northern Europe. Boreas 24:260–268CrossRefGoogle Scholar
  91. Zolitschka B, Behre KE, Schneider J (2003) Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives-examples from the Bronze Age to the Migration period, Germany. Quat Sci Rev 22:81–100. doi:10.1016/S0277-3791(02)00182-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Agathe Fourmont
    • 1
  • Jean-Jacques Macaire
    • 1
  • Jean-Gabriel Bréhéret
    • 1
  1. 1.UMR CNRS 6113 ISTO-Tours, Laboratoire de Géologie des Environnements Aquatiques Continentaux (GéEAC), Faculté des Sciences et TechniquesUniversité François-RabelaisToursFrance

Personalised recommendations