Skip to main content

Advertisement

Log in

Development of a chironomid-based air temperature inference model for the central Canadian Arctic

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Subfossil midge remains were identified in surface sediment recovered from 88 lakes in the central Canadian Arctic. These lakes spanned five vegetation zones, with the southern-most lakes located in boreal forest and the northern-most lakes located in mid-Arctic tundra. The lakes in the calibration are characterized by ranges in depth, summer surface-water temperature (SSWT), average July air temperature (AJAT) and pH of 15.5 m, 10.60°C, 8.40°C and 3.69, respectively. Redundancy analysis (RDA) indicated that maximum depth, pH, AJAT, total nitrogen-unfiltered (TN-UF), Cl and Al capture a large and statistically significant fraction of the overall variance in the midge data. Inference models relating midge abundances and AJAT were developed using different approaches including: weighted averaging (WA), weighted averaging-partial least squares (WA-PLS) and partial least squares (PLS). A chironomid-based inference model, based on a two-component WA-PLS approach, provided robust performance statistics with a high coefficient of determination (r 2 = 0.77) and low root mean square error of prediction (RMSEP = 1.03°C) and low maximum bias. The use of a high-resolution gridded climate data set facilitated the development of the midge-based inference model for AJAT in a region with a paucity of meteorological stations and where previously only the development of a SSWT inference model was possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Alley RB, Mayewski PA, Sowers T, Stuiver M, Taylor KC, Clark PU (1997) Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25:483–486. doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2

    Google Scholar 

  • Armitage PD, Cranston PS, Pinder LCV (1995) The chironomidae: the biology and ecology of non-biting midges. Chapman & Hall, London

    Google Scholar 

  • Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K et al (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314. doi:10.1007/s10933-006-0014-6

    Article  Google Scholar 

  • Birks HJB (1995) Quantitative paleoenvironmental reconstructions. In: Maddy D, Brew JS (eds) Statistical modelling of quaternary science data. Quaternary Research Association, London, pp 161–254

    Google Scholar 

  • Birks HJB (1998) Frey DG & Deevey ES review #1—numerical tools in palaeolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–332. doi:10.1023/A:1008038808690

    Article  Google Scholar 

  • Bitusik P, Svitok M, Kolosta P, Hubkova M (2006) Classification of the Tatra Mountain lakes (Slovakia) using chironomids (Diptera, Chironomidae). Biologia 61:S191–S201. doi:10.2478/s11756-006-0131-8

    Article  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of Boreal forest vegetation on global climate. Nature 359:716–718. doi:10.1038/359716a0

    Article  Google Scholar 

  • Bonsal BR, Prowse TD (2003) Trends and variability in spring and autumn 0 degrees C-isotherm dates over Canada. Clim Change 57:341–358. doi:10.1023/A:1022810531237

    Article  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055. doi:10.2307/1940179

    Article  Google Scholar 

  • Brodin YW (1990) Midge fauna development in acidified lakes in Northern Europe. Philos Trans R Soc Lond B Biol Sci 327:295–298. doi:10.1098/rstb.1990.0065

    Article  Google Scholar 

  • Brodersen KP, Anderson NJ (2002) Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshw Biol 47:1137–1157

    Article  Google Scholar 

  • Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741. doi:10.1016/S0277-3791(01)00038-5

    Article  Google Scholar 

  • Brooks SJ, Bennion H, Birks HJB (2001) Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshw Biol 46:513–533

    Article  Google Scholar 

  • Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of palaeoarctic chironomidae larvae in palaeoecology. Quaternary Research Association, London

    Google Scholar 

  • Chapin FS, McGuire AD, Randerson J, Pielke R, Baldocchi D, Hobbie SE et al (2000) Arctic and boreal ecosystems of western North America as components of the climate system. Glob Change Biol 6:211–223. doi:10.1046/j.1365-2486.2000.06022.x

    Article  Google Scholar 

  • Chapman WL, Walsh JE (1995) Recent variations of sea ice and air temperatures in high latitudes. Bull Am Meteorol Soc 74:33–47. doi:10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2

    Google Scholar 

  • Cranston PS (1982) A key to the larvae of the British Orthocladiinae (Chironomidae). Sci Publ Freshw Biol Assoc 45:1–152

    Google Scholar 

  • Cwynar LC, Levesque AJ (1995) Chironomid evidence for late-glacial climatic reversals in Maine. Quat Res 43:405–413

    Article  Google Scholar 

  • Douglas MSV, Smol JP, Blake W (1994) Marked post-18th century environmental change in high-arctic ecosystems. Science 266:416–419

    Article  Google Scholar 

  • Environment Canada (1996a) Manual of analytic methods. Volume 1: major ions and nutrients. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, Canada

  • Environment Canada (1996b) Manual of analytic methods. Volume 2: trace Metals. The National Laboratory of Environmental Testing, Canada Centre for Inland Waters, Burlington, Canada

  • Foley JA, Kutzbach JE, Coe MT, Levis S (1994) Feedbacks between climate and Boreal forests during the Holocene epoch. Nature 371:52–54. doi:10.1038/371052a0

    Article  Google Scholar 

  • Francis DR, Wolfe AP, Walker IR, Miller GH (2006) Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin island, Nunavut, Arctic Canada. Palaeogeogr Palaeoclimatol Palaeoecol 236:107–124. doi:10.1016/j.palaeo.2006.01.005

    Article  Google Scholar 

  • Gajewski K, Bouchard G, Wilson SE, Kurek J, Cwynar LC (2005) Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549:131–143. doi:10.1007/s10750-005-5444-z

    Article  Google Scholar 

  • Glew J (1991) Miniature gravity corer for recovering short sediment cores. J Paleolimnol 5:285–287. doi:10.1007/BF00200351

    Article  Google Scholar 

  • Halvorsen GA, Heneberry JH, Snucins E (2001) Sublittoral chironomids as indicators of acidity (Diptera: Chironomidae). Water Air Soil Pollut 130:1385–1390. doi:10.1023/A:1013975905893

    Article  Google Scholar 

  • Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350. doi:10.1023/A:1017568913302

    Article  Google Scholar 

  • Heiri O, Lotter AF (2005) Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516. doi:10.1080/03009480500231229

    Article  Google Scholar 

  • Hu FS, Kaufman D, Yoneji S, Nelson D, Shemesh A, Huang Y et al (2003) Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic. Science 301:1890–1893. doi:10.1126/science.1088568

    Article  Google Scholar 

  • Hu FS, Nelson DM, Clarke GH, Ruhland KM, Huang YS, Kaufman DS et al (2006) Abrupt climatic events during the last glacial-interglacial transition in Alaska. Geophys Res Lett:33 doi:10.1029/2006GLO27261

  • IPCC (2007) Working Group I Report (WGI): Climate Change 2007: the physical science basis. Cambridge University Press, Cambridge, UK

  • Johannessen OM, Miles M, Bjorgo E (1995) The Arctic’s shrinking sea-ice. Nature 376:126–127. doi:10.1038/376126a0

    Article  Google Scholar 

  • Johnson MG, McNeil OC (1988) Fossil midge associations in relation to trophic and acidic state of the Turkey Lakes. Can J Fish Aquat Sci 45:136–144. doi:10.1139/f88-278

    Article  Google Scholar 

  • Johnson MG, Kelso JRM, McNeil OC, Morton WB (1990) Fossil midge associations and the historical status of fish in acidified lakes. J Paleolimnol 3:113–127. doi:10.1007/BF00414066

    Article  Google Scholar 

  • Jones VJ, Juggins S (1995) The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshw Biol 34:433–445. doi:10.1111/j.1365-2427.1995.tb00901.x

    Article  Google Scholar 

  • Juggins S (2003) Program C2 data analysis. Version 1.4.2. University of Newcastle, Newcastle UK

    Google Scholar 

  • Kattenberg A et al (1996) Climate models––Projections of future climate. Climate Change 1995. In Houghton et al (eds) The science of climate change. Cambridge University Press, pp 285–357

  • Larocque I, Rolland N (2006) A visual guide to sub-fossil chironomids from Québec to Ellesmere Island. Rapport R-900. Institut National de la Recherche Scientifique, Québec

    Google Scholar 

  • Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 26:307–322. doi:10.1023/A:1017524101783

    Article  Google Scholar 

  • Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can J Fish Aquat Sci 63:1286–1297. doi:10.1139/F06-020

    Article  Google Scholar 

  • Levesque AJ, Mayle FE, Walker IR, Cwynar LC (1993) A previously unrecognized Late-Glacial cold event in Eastern North. Am Nat 361:623–626

    Google Scholar 

  • Levesque AJ, Cwynar LC, Walker IR (1997) Exceptionally steep north south gradients in lake temperatures during the last deglaciation. Nature 385:423–426. doi:10.1038/385423a0

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1997) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps.1. Climate. J Paleolimnol 18:395–420

    Article  Google Scholar 

  • Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–463. doi:10.1023/A:1007994206432

    Article  Google Scholar 

  • Lotter AF, Walker IR, Brooks SJ, Hofmann W (1999) An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs North America. Quat Sci Rev 18:717–735. doi:10.1016/S0277-3791(98)00044-4

    Article  Google Scholar 

  • MacDonald GM, Edwards TWD, Moser KA, Pienitz R, Smol JP (1993) Rapid response of treeline vegetation and lakes to past climate warming. Nature 361:243–246

    Article  Google Scholar 

  • MacDonald GM, Szeicz JM, Claricoates J, Dale KA (1998) Response of the central Canadian treeline to recent climatic changes. Ann Assoc Am Geogr 88:183–208. doi:10.1111/1467-8306.00090

    Article  Google Scholar 

  • Miller GH, Wolfe AP, Briner JP, Sauer PE, Nesje A (2005) Holocene glaciation and climate evolution of Baffin Island Arctic Canada. Quat Sci Rev 24:1703–1721. doi:10.1016/j.quascirev.2004.06.021

    Article  Google Scholar 

  • Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent climate change in the Arctic. Science 297:1497–1502. doi:10.1126/science.1076522

    Article  Google Scholar 

  • New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25. doi:10.3354/cr021001

    Article  Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of Arctic Tundra ecosystems from a net carbon-dioxide sink to a source. Nature 361:520–523. doi:10.1038/361520a0

    Article  Google Scholar 

  • Olander H, Korhola A, Blom T (1997) Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J Paleolimnol 18:45–59

    Article  Google Scholar 

  • Olander H, Birks HJB, Korhola A, Blom T (1999) An expanded calibration model for inferring lakewater and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9:279–294. doi:10.1191/095968399677918040

    Article  Google Scholar 

  • Oliver DR, Roussel ME (1983) The insects and arachnids of Canada, Part II: the genera of larval midges of Canada-Diptera: Chironomidae. Agric Can Publ 1746:1–263

    Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256. doi:10.1126/science.278.5341.1251

    Article  Google Scholar 

  • Padgham WA, Fyson WK (1992) The Slave Province—a distinct Archean Craton. Can J Earth Sci 29:2072–2086

    Article  Google Scholar 

  • Ponader K, Pienitz R, Vincent W, Gajewski K (2002) Limnological conditions in a subarctic lake (northern Quebec, Canada) during the late Holocene: analyses based on fossil diatoms. J Paleolimnol 27:353–366. doi:10.1023/A:1016033028144

    Article  Google Scholar 

  • Porinchu DF, Cwynar LC (2000) The distribution of freshwater Chironomidae (Insecta : Diptera) across treeline near the lower Lena River, northeast Siberia, Russia. Arct Antarct Alp Res 32:429–437. doi:10.2307/1552392

    Article  Google Scholar 

  • Porinchu DF, MacDonald GM, Bloom AM, Moser KA (2002) The modern distribution of chironomid sub-fossils (Insecta: Diptera) in the Sierra Nevada, California: potential for paleoclimatic reconstructions. J Paleolimnol 28:355–375. doi:10.1023/A:1021658612325

    Article  Google Scholar 

  • Porinchu DF, Potito AP, MacDonald GM, Bloom AM (2007a) Subfossil chironomids as indicators of recent climate change in Sierra Nevada, California, lakes. Arct Antarct Alp Res 39:286–296. doi:10.1657/1523-0430(2007)39[286:SCAIOR]2.0.CO;2

    Article  Google Scholar 

  • Porinchu DF, Moser KA, Munroe J (2007b) Development of a midge-based summer surface water temperature inference model for the Great Basin of the Western United States. Arct Antarct Alp Res 39:566–577. doi:10.1657/1523-0430(07-033)[PORINCHU]2.0.CO;2

    Article  Google Scholar 

  • Potito AP, Porinchu DF, MacDonald GM, Moser KA (2006) A late Quaternary chironomid-inferred temperature record from the Sierra Nevada, California, with connections to northeast Pacific sea surface temperatures. Quat Res 66:356–363. doi:10.1016/j.yqres.2006.05.005

    Article  Google Scholar 

  • Quinlan R, Smol JP, Hall RI (1998) Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil midges (Diptera: Chironomidae). Can J Fish Aquat Sci 55:587–596. doi:10.1139/cjfas-55-3-587

    Article  Google Scholar 

  • Ritchie JC (1984) Past and present vegetation of the far northwest of Canada. University of Toronto Press, Toronto, 251 pp

    Google Scholar 

  • Rolland N, Larocque I, Francus P, Pienitz R, Laperrière L Holocene climate inferred from biological (Diptera: Chironomidae) analyses in a Southampton Island (Nunavut, Canada) lake. Holocene (in press)

  • Saulnier-Talbot E, Pienitz R (2001) Postglacial isolation of a coastal basin near Kuujjuaraapik-Whapmagoostui, Hudsonie: a diatom biostratigraphical investigation. Geogr Phys Quat 55:63–74

    Google Scholar 

  • Seppa H, Cwynar LC, MacDonald GM (2003) Post-glacial vegetation reconstruction and a possible 8200 cal. yr BP event from the low arctic of continental Nunavut, Canada. J Quat Sci 18:621–629

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS, Osterkamp T, Dyurgerov M, Romanovsky V et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207. doi:10.1023/A:1005504031923

    Article  Google Scholar 

  • Sharpe DR (1993) Surficial geology, Cambridge Bay, District of Franklin, Northwest Territories, 1825A. Geological Survey of Canada

  • Simpson KW, Bode RW (1980) Common larvae of Chironomidae (Diptera) from New York State streams and rivers with particular reference to the fauna of artificial substrates. Bull N Y State Mus 439:1–105

    Google Scholar 

  • Sirois L (1992) The Transition between boreal forest and tundra. In: Shugart H, Leemans R, Bonan G (eds) A systems analysis of the Global Boreal forest. Cambridge University Press, Cambridge, pp 196–215

    Google Scholar 

  • Smol JP, Douglas MSV (2007) Crossing the final ecological threshold in high Arctic ponds. Proc Natl Acad Sci USA 104:12395–12397. doi:10.1073/pnas.0702777104

    Article  Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A et al (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci USA 102:4397–4402. doi:10.1073/pnas.0500245102

    Article  Google Scholar 

  • Szeicz JM, MacDonald GM (2001) Montane climate and vegetation dynamics in easternmost Beringia during the Late Quaternary. Quat Sci Rev 20:247–257. doi:10.1016/S0277-3791(00)00119-0

    Article  Google Scholar 

  • Velle G, Brooks SJ, Birks HJB, Willassen E (2005) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1429–1462. doi:10.1016/j.quascirev.2004.10.010

    Article  Google Scholar 

  • Walker IR (1988) Late-Quaternary Paleoecology of Chironomidae (Diptera: Insecta) from Lake Sediments in British Columbia, PhD dissertation, Simon Fraser University, Burnaby, Canada, 204 pp

  • Walker IR (2001) Midges: Chironomidae and related Diptera. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. vol 4: zoological indicators. Kluwer Academic Publishers, Dordrecht, pp 43–66

    Google Scholar 

  • Walker IR, MacDonald GM (1995) Distributions of Chironomidae (Insecta, Diptera) and other fresh-water midges respect to treeline, northwest-territories, Canada. Arct Alp Res 27:258–263. doi:10.2307/1551956

    Article  Google Scholar 

  • Walker IR, Mott RJ, Smol JP (1991) Allerod-Younger Dryas lake temperatures from midge fossils in Atlantic Canada. Science 253:1010–1012. doi:10.1126/science.253.5023.1010

    Article  Google Scholar 

  • Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178. doi:10.1023/A:1007997602935

    Article  Google Scholar 

  • Wiederholm T (ed) (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part I––Larvae. Entomol Scand Suppl 19:1–457

Download references

Acknowledgements

This work was funded by a NSF Paleoclimate award (ATM-0442177) to D.F.P and K.A.M. We are grateful to NSF, VECO, the Polar Continental Shelf Project (PCSP) and the Nunavut Research Institute (NRI) for field and logistical support. We are also grateful to Glen MacDonald and two anonymous reviewers for detailed, constructive criticism of this paper. We thank Derek Muir, Xiaowa Wang and their colleagues at the water chemistry lab in the National Laboratory for Environmental Testing (NLET), Water Science and Technology Directorate of Environment Canada (Burlington, ON) for water chemistry analyses. We also thank Ken Clogg-Wright and Glen MacDonald for their help in the field and Lori Miller and Russ Brandenburg for sediment processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Porinchu.

Additional information

David Porinchu and Nicolas Rolland contributed equally to the work.

Appendix 1

Appendix 1

Fig. 6
figure 6

Photos of the mentum of 4 morpho-types of Corynocera oliveri present in the central Canadian Arctic training set

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porinchu, D., Rolland, N. & Moser, K. Development of a chironomid-based air temperature inference model for the central Canadian Arctic. J Paleolimnol 41, 349–368 (2009). https://doi.org/10.1007/s10933-008-9233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-008-9233-3

Keywords

Navigation