Journal of Paleolimnology

, Volume 41, Issue 2, pp 329–342 | Cite as

Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland

  • Isabelle Larocque
  • Martin Grosjean
  • Oliver Heiri
  • Christian Bigler
  • Alex Blass
Original Paper

Abstract

Inferred temperatures from chironomids preserved in the varved sediment of Lake Silvaplana in the Eastern Swiss Alps were compared with instrumental data obtained from a meteorological station in Sils-Maria, on the shore of Lake Silvaplana, for the time interval 1850–2001. At near-annual resolution, the general patterns of chironomid-inferred temperature changes followed the meteorological record over the last ∼150 years (rPearson = 0.65, P = 0.01) and 87% of the inferences had deviations from the instrumental data below the root-mean-square error of prediction (RMSEP). When the inferences were compared with a 2-year running mean in the meteorological data, 94% of the inferences had differences with the instrumental data below the RMSEP, indicating that more than half of the inaccurate inferences may have been due to errors in varve counting. Larger deviations from the instrumental data were also obtained from samples with low percentages of fossil taxa represented in the training set used for temperature reconstruction and/or assemblages with poor fit to temperature. Changes in total phosphorus (TP, as inferred by diatoms) and/or greater precipitation were possible factors affecting the accuracy of the temperature reconstruction. Although these factors might affect the quantitative estimates, obtaining >80% accurate temperature inferences suggests that chironomid analysis is a reliable tool for reconstructing mean July air temperature quantitatively over the last ∼150 years in Lake Silvaplana.

Keywords

Non-biting midges Meteorological data Numerical methods Dating errors Climate change 

References

  1. Ariztegui D, Farrimond P, McKenzie JA (1996) Compositional variations in sedimentary lacustrine organic matter and their implications for high alpine Holocene environmental changes: Lake St-Moritz, Switzerland. Org Geochem 24:453–461 doi:10.1016/0146-6380(96)00046-0 CrossRefGoogle Scholar
  2. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170 doi:10.1111/j.1469-8137.1996.tb04521.x CrossRefGoogle Scholar
  3. Bigler C, Heiri O, Krskova R, Lotter AF, Sturm M (2006) Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquat Sci 68:154–171 doi:10.1007/s00027-006-0813-x CrossRefGoogle Scholar
  4. Bigler C, von Gunten L, Lotter AF, Hausmann S, Blass A, Ohlendorf C et al (2007) Quantifying human-induced eutrophication in Swiss mountain lakes since AD 1800 using diatoms. Holocene 17:1141–1154 doi:10.1177/0959683607082555 CrossRefGoogle Scholar
  5. Birks HJB (1998) Numerical tools in paleolimnology—progress, potentialities, and problems. J Paleolimnol 20:307–322 doi:10.1023/A:1008038808690 CrossRefGoogle Scholar
  6. Blass A, Bigler C, Grosjean M, Sturm M (2007a) Decadal-scale autumn temperature reconstruction back to A.D. 1580 inferred from varved lake sediments of Lake Silvaplana (south-eastern Swiss Alps). Quat Res 68:184–195 doi:10.1016/j.yqres.2007.05.004 CrossRefGoogle Scholar
  7. Blass A, Grosjean M, Troxler A, Sturm M (2007b) How stable are 20th century calibration models? A high-resolution summer temperature reconstruction for the eastern Swiss Alps back to A.D. 1580 derived from proglacial varved sediments. Holocene 17:51–63 doi:10.1177/0959683607073278 CrossRefGoogle Scholar
  8. Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801. doi:10.1002/joc.689 CrossRefGoogle Scholar
  9. Bosli-Pavoni M (1971) Ergebnisse der limnologischen Untersuchungen der Oberengadiber Seen. Z Hydrologie 33:368–409Google Scholar
  10. Brodersen KP, Lindegaard C (1999) Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshw Biol 42:143–157 doi:10.1046/j.1365-2427.1999.00457.x CrossRefGoogle Scholar
  11. Brooks SJ (2006) Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910. doi:10.1016/j.quascirev.2005.03.021 CrossRefGoogle Scholar
  12. Brooks SJ, Birks HJB (2000a) Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. J Paleolimnol 23:77–89. doi:10.1023/A:1008044211484 CrossRefGoogle Scholar
  13. Brooks SJ, Birks HJB (2000b) Chironomid-inferred Late-glacial air temperatures at Whitrig Bog, southeast Scotland. J Quat Sci 15:759–764. doi :10.1002/1099-1417(200012)15:8<759::AID-JQS590>3.0.CO;2-VGoogle Scholar
  14. Brooks SJ, Langdon PG, Heiri O (2007) The identification and use of Palaearctic Chironomidae larvae in palaeoecology. QRA Technical Guide No. 10, Quaternary Research Association, 276 ppGoogle Scholar
  15. Caseldine C, Geirsdottir A, Langdon P (2003) Efstadalsvatn—a multi-proxy study of a Holocene lacustrine sequence from NW Iceland. J Paleolimnol 30:55–73 doi:10.1023/A:1024781918181 CrossRefGoogle Scholar
  16. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi:10.1002/joc.1216 CrossRefGoogle Scholar
  17. Gobet E, Tinner W, Hochuli PA, van Leeuwen JFN, Ammann B (2003) Middle to Late Holocene vegetation history of the Upper Engadine (Swiss Alps): the role of man and fire. Veg Hist Archaeobot 12:143–163 doi:10.1007/s00334-003-0017-4 CrossRefGoogle Scholar
  18. Heinrichs M, Barnekow L, Rosenberg S (2005) A comparison of chironomid biostratigraphy from Lake Vuolep Njakajaure with vegetation, lake-level, and climate changes in Abisko National Park, Sweden. J Paleolimnol 36:119–131 doi:10.1007/s10933-006-0010-x CrossRefGoogle Scholar
  19. Heiri O, Lotter AF (2001) Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J Paleolimnol 26:343–350. doi:10.1023/A:1017568913302 CrossRefGoogle Scholar
  20. Heiri O, Lotter AF (2003) 9000 years of chironomid assemblage dynamics in an Alpine lake: long-term trends, sensitivity to disturbance, and resilience of the fauna. J Paleolimnol 30:273–289. doi:10.1023/A:1026036930059 CrossRefGoogle Scholar
  21. Heiri O, Lotter AF (2005) Holocene and Lateglacial summer temperature reconstruction in the Swiss Alps based on fossil assemblages of aquatic organisms: a review. Boreas 34:506–516. doi:10.1080/03009480500231229 CrossRefGoogle Scholar
  22. Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (France). J Quat Sci 20:33–44. doi:10.1002/jqs.895 CrossRefGoogle Scholar
  23. Heiri O, Lotter AF, Hausmann S, Kienast F (2003) A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13:477–484. doi:10.1191/0959683603hl640ft CrossRefGoogle Scholar
  24. Juggins S (1991) ZONE software, Version 1.2. Newcastle University, NewcastleGoogle Scholar
  25. Korhola A, Olander H, Blom T (2000) Cladoceran and chironomid assemblages as qualitative indicators of water depth in subarctic Fennoscandian lakes. J Paleolimnol 24:43–54. doi:10.1023/A:1008165732542 CrossRefGoogle Scholar
  26. Langdon PG, Barber KE, Lomas-Clarke SH (previously Morriss) (2004) Reconstructing climate and environmental change in Northern England through chironomid and pollen analyses: evidence from Talkin Tarn, Cumbria. J Paleolimnol 32:197–213. doi: 10.1023/B:JOPL.0000029433.85764.a5 Google Scholar
  27. Larocque I (2001) How many chironomid head capsules is enough? A statistical approach to determine sample size for paleoclimatic reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 172:133–142. doi:10.1016/S0031-0182(01)00278-4 CrossRefGoogle Scholar
  28. Larocque I, Bigler C (2004) Similarities and discrepancies between chironomid- and diatom-inferred temperature reconstructions through the Holocene at Lake 850, northern Sweden. Quat Int 122:109–121. doi:10.1016/j.quaint.2004.01.033 CrossRefGoogle Scholar
  29. Larocque I, Hall RI (2003) Chironomids as quantitative indicators of mean July air temperature: validation by comparison with century-long meteorological records from northern Sweden. J Paleolimnol 29:475–493. doi:10.1023/A:1024423813384 CrossRefGoogle Scholar
  30. Larocque I, Hall RI (2004) Holocene temperature estimates and chironomid community composition in the Abisko Valley, northern Sweden. Quat Sci Rev 23:2453–2465. doi:10.1016/j.quascirev.2004.04.006 CrossRefGoogle Scholar
  31. Larocque I, Hall RI, Grahn E (2001) Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). J Paleolimnol 36:307–322. doi:10.1023/A:1017524101783 CrossRefGoogle Scholar
  32. Larocque I, Pienitz R, Rolland N (2006) Factors influencing the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Quebec, Canada. Can J Fish Aquat Sci 63:1286–1297. doi:10.1139/F06-020 CrossRefGoogle Scholar
  33. Lotter AF, Birks HJB, Hofmann W, Marchetto A (1998) Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J Paleolimnol 19:443–463. doi:10.1023/A:1007994206432 CrossRefGoogle Scholar
  34. Maisch M, Wipf A, Denneler B, Battaglia J, Benz C (1999) Die Gletscher der Schweizer Alpen. Schlussbericht NFP 31, Verlag, Zürich, 373 ppGoogle Scholar
  35. Ohlendorf C (1998) High alpine lake sediments as chronicles for regional glacier and climate history in the Upper Engadine, southeastern Switzerland. Dissertation, ETH, Zürich, 203 ppGoogle Scholar
  36. Ohlendorf C, Niessen F, Weissert H (1997) Glacial varve thickness and 127 years of instrumental climate data: a comparison. Clim Change 36:391–411. doi:10.1023/A:1005376913455 CrossRefGoogle Scholar
  37. Olander H, Birks HJB, Korhola A, Blom T (1999) An expanded calibration model for inferring lake water and air temperatures from fossil chironomid assemblages in northern Fennoscandia. Holocene 9:279–294. doi:10.1191/095968399677918040 CrossRefGoogle Scholar
  38. Oliver DR, Roussel ME (1983) The insects and arachnids of Canada, Part II. The genera of larval midges of Canada. Agriculture Canada, Publication 1746, 263 ppGoogle Scholar
  39. Palmer S, Walker IR, Heinrichs M, Hebda R, Scudder G (2002) Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada). J Paleolimnol 28:469–490. doi:10.1023/A:1021644122727 CrossRefGoogle Scholar
  40. Rieradevall M, Brooks SJ (2001) An identification guide to subfossil Tanypodinae larvae based on cephalic setation. J Paleolimnol 25:81–99. doi:10.1023/A:1008185517959 CrossRefGoogle Scholar
  41. Quinlan R, Smol JP (2001) Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshw Biol 46:1521–1551. doi:10.1046/j.1365-2427.2001.00763.x CrossRefGoogle Scholar
  42. Scherrer B (1984) Biostatistique. In: Morin G (ed), Boucherville, Québec, CanadaGoogle Scholar
  43. ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Window User’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA, 500 ppGoogle Scholar
  44. Velle G, Larocque I Exploring the effect of removing taxa smaller than 150 μm on temperature reconstruction in cold (mean July/August air temperature ≤11°C) lakes. J Paleolimnol (in press)Google Scholar
  45. Velle G, Larsen J, Eide W, Peglar SM, Birks HJB (2005a) Holocene environmental history and climate of Ratasjoen, a low alpine lake in south-central Norway. J Paleolimnol 33:129–153. doi:10.1007/s10933-004-2689-x CrossRefGoogle Scholar
  46. Velle G, Brooks SJ, Birks HJB, Willassen E (2005b) Chironomids as a tool for infering Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1429–1462CrossRefGoogle Scholar
  47. Walker IR, Cwynar LC (2006) Midges and palaeotemperature reconstruction—the North American experience. Quat Sci Rev 25:1911–1925. doi:10.1016/j.quascirev.2006.01.014 CrossRefGoogle Scholar
  48. Walker IR, Levesque AJ, Cwynar LC, Lotter AF (1997) An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J Paleolimnol 18:165–178. doi:10.1023/A:1007997602935 CrossRefGoogle Scholar
  49. Wiederholm Y (1983) Chironomidae of the Holartic region, Part 1, Larvae. Entomologica Scandinavia, Supplement 19, 457 ppGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Isabelle Larocque
    • 1
    • 2
  • Martin Grosjean
    • 1
  • Oliver Heiri
    • 3
  • Christian Bigler
    • 4
  • Alex Blass
    • 5
  1. 1.Oeschger Centre for Climate Change Research and Institute of GeographyUniversity of BernBernSwitzerland
  2. 2.INRS-ETEQuebecCanada
  3. 3.Palaeoecology, Institute of Environmental Biology, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
  4. 4.Ecology and Environmental ScienceUmeå UniversityUmeaSweden
  5. 5.ZurichSwitzerland

Personalised recommendations