Journal of Paleolimnology

, Volume 40, Issue 3, pp 809–821 | Cite as

A 12.8-ka-long palaeoenvironmental record revealed by subfossil ostracod data from lacustrine freshwater tufa in Lake Sinijärv, northern Estonia

  • Kadri SoharEmail author
  • Volli Kalm
Original Paper


High-resolution quantitative analysis of ostracod assemblages from 4.3-m-thick freshwater tufa-rich sediments, deposited during the last 12.8 ka in Lake Sinijärv, northern Estonia, yielded information on water level, trophic state conditions, and temperature changes since the late glacial. AMS 14C dates from aquatic mosses provided time constraints on the palaeoenvironmental development of the region. In the ostracod assemblage structure, four faunal zones (OFZ) were determined. The most significant change in the ostracod fauna occurred at 10,590 cal. y BP, when a typical littoral, polythermophilic fauna was replaced by a mostly sublittoral, species-rich meso- to stenothermophilic fauna. The ostracod data indicate two major low-water-level periods in the lake at 12,800–10,590 and 7,600–3,700 cal. y BP. Sediment analysis indicates the most intensive tufa precipitation occurred during these low stand periods, rather than during the warmest climate in Estonia between 8,000 and 4,500 cal. y BP. The late glacial low water level in the groundwater-fed Lake Sinijärv at 12,800–10,590 cal. y BP coincides partly with the regression in the Lake Peipsi basin (14,000–12,100 cal. y BP) and with the last drainage event of the Baltic Ice Lake at 11,600 cal. y BP. The low-water-level period in Lake Sinijärv occurred earlier than in lakes in the SE sector of Scandinavian glaciation. The change from low to high water level in Lake Sinijärv at 10,590 cal. y BP preceded the first post-glacial transgression events in the small lowland lakes of Estonia, southern Sweden, Poles`ye in Belarus, and Valday in NW Russia. In general, the mid-Holocene low-water-level period in Lake Sinijärv between 7,600 and 3,700 cal. y BP is concurrent with the regressions in the lakes of the SE sector of Scandinavian glaciation.


Ostracods Freshwater tufa Water level change Holocene Estonia 



We thank the Poznań Radiocarbon Laboratory, Poland, for AMS dating and the Tartu Environment Research Laboratory, Estonia, for Fetotal analyses. Prof. T. Meidla is acknowledged for helpful discussions and consultations. This work was funded by Estonian State Target Foundation projects No. 0182530s03 and 0182531s03. This research received support from the SYNTHESYS Project which is financed by European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area” Programme. Especially, we thank anonymous reviewers for the constructive advice.


  1. Antonsson K, Brooks SJ, Seppä H, Telford RJ, Birks HJB (2006) Quantitative palaeotemperature records inferred from fossil pollen and chrinomid assemblages from Lake Gilljärnen, northern central Sweden. J Quat Sci 21:831–841CrossRefGoogle Scholar
  2. Arold I (2005) Eesti maastikud. Tartu Ülikooli Kirjastus, Tartu, pp 35–38Google Scholar
  3. Bartosh T (1976) Process of carbonate accumulation and stratigraphic position of carbonate deposits in Holocene section of the European part of the USSR. In: Bartosh T, Kabailene M, Raukas A (eds) Palynology in continental and marine geologic investigations. Zinatne Publishers, Riga, pp 23–46Google Scholar
  4. Björk J, Andren T, Wastegard S, Possnert G, Schoning K (2002) An event stratigraphy for the last Glacial-Holocene transition in eastern middle Sweden: results from investigations of varved clay and terrestrial sequences. Quat Sci Rev 21:1489–1501CrossRefGoogle Scholar
  5. Bogmark A (2005) Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification data. Holocene 15:387–395CrossRefGoogle Scholar
  6. Bronk Ramsey C (1995) Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37:425–430Google Scholar
  7. Bronk Ramsey C (2001) Development of the radiocarbon program OxCal. Radiocarbon 43:355–363Google Scholar
  8. Brooks SJ (2006) Fossil midges (Diptera: Chrinomidae) as palaeoclmiatic indicators for the Eurasian region. Quat Sci Rev 25:1894–1910CrossRefGoogle Scholar
  9. Danielopol DL, Handl M, Yin Yu (1993) Benthic ostracods in the pre-alpine deep lake Mondsee. Notes on their origin and distribution. In: McKenzie KG, Jones PJ (eds) Ostracoda in the Earth and Life Sciences. Proceedings of the 11th international symposium on Ostracoda. AA Balkema, Rotterdam, Brookfield, pp 465–480Google Scholar
  10. Danielopol DL, Horne DJ, Wood RN (1996) Notes on the ecology of Metacypris cordata (Ostracoda, Timiriaseviinae); why does it not colonise groundwater habitats. In: Keen MC (ed) Proceedings of the 2nd European ostracodologists meeting. British Micropalaeontological Society, London, pp 175–179Google Scholar
  11. Danielopol DL, Ito E, Wansard G, Kamiya T, Cronin TM, Baltanás A (2002) Techniques for collection and study of Ostracoda. In: Holmes JA, Chivas AR (eds) The ostracoda: applications in quaternary research. Geophysical monograph 131. American Geophysical Union, Washington, DC, pp 65–97Google Scholar
  12. Dansgaard W, White JCW, Johnsen SJ (1989) The abrupt termination of the Younger Dryas climate event. Nature 339:532–534 CrossRefGoogle Scholar
  13. Davies P, Griffiths HI (2005) Molluscan and ostracod biostratigraphy of Holocene tufa in the test valley at Bossington, Hampshire, UK. Holocene 15:97–110CrossRefGoogle Scholar
  14. Davydova NN, Subetto DA, Khomutova VI, Sapelko TV (2001) Late Pleistocene-Holocene paleolimnology of three northwestern Russian lakes. J Paleolimnol 26:37–51CrossRefGoogle Scholar
  15. Eesti Entsüklopeedia (2002) Eesti üld, 11. Eesti Entsüklopeediakirjastus, Tallinn, 114 ppGoogle Scholar
  16. Gedda B (2001) Environmental and climatic aspects of the early to mid Holocene calcareous tufa and land mollusc fauna in southern Sweden. Lundqua Thesis 45, Department of Quaternary Geology, Lund University, Sweden, 10 ppGoogle Scholar
  17. Goudie AS, Viles HA, Pentecost A (1993) The late-Holocene tufa decline in Europe. Holocene 3:181–186CrossRefGoogle Scholar
  18. Griffith HI, Evans JG (1995) The Late-glacial and early Holocene colonisation of the British Isles by freshwater ostracods. In: Riha J (ed) Ostracoda and Biostratigraphy. Proceedings of the 12th international symposium on Ostracoda. AA Balkema, Rotterdam, pp 291–302Google Scholar
  19. Griffith HI, Pillidge KE, Hill CJ, Evans JG, Learner MA (1996) Ostracod gradients in a calcareous stream: implications for the palaeoecological interpretation of tufas and travertines. Limnologica 26:49–61Google Scholar
  20. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Blackwell Publishing Ltd, Oxford, 351 ppGoogle Scholar
  21. Hang T, Miidel A, Pirrus R (1995) Late Weichselian and Holocene water-level changes of Lake Peipsi, eastern Estonia. PACT 50:121–131Google Scholar
  22. Hang T, Kalm V, Kihno K, Milkevicius M (2008) Pollen, diatom and plant macrofossil assemblages indicating an exceptionally low water level of Lake Peipsi at the beginning of the Holocene. Hydrobiologia 599:13–21CrossRefGoogle Scholar
  23. Harrison SP, Digerfeldt G (1993) Europan lakes as palaeohydrological and palaeoclimatic indicators. Quat Sci Rev 12:233–248CrossRefGoogle Scholar
  24. Heikkilä M, Seppä H (2003) A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat Sci Rev 22:541–554CrossRefGoogle Scholar
  25. Heinsalu Ü, Timm T, Karise V (1976) Looduskaitset vajavad allikad Eesti NSV-s. In: Viiding H (ed) Eesti NSV maapõue kaitsest. Valgus, Tallinn, pp 68–95Google Scholar
  26. Hughes PD, Mauquoy D, Barber K, Langdon PG (2000) Mire-development pathways and palaeoclimatic records from a full Holocene peat archive at Walton Moss, Cumbria, England. Holocene 10:465–479CrossRefGoogle Scholar
  27. Kalm V (2006) Pleistocene chronostratigraphy in Estonia, southeastern sector of the Scandinavian glaciation. Quat Sci Rev 25:960–975CrossRefGoogle Scholar
  28. Koff T, Punning J-M, Sarmaja-Korjonen K, Martma T (2005). Ecosystem response to early and late Holocene lake level changes in Lake Juusa, southern Estonia. Pol J Ecol, 53:553–570Google Scholar
  29. Korhola A (1995) Holocene climatic variations in southern Finland reconstructed from peat-initiation data. Holocene 5:43–58CrossRefGoogle Scholar
  30. Langdon PG, Barber KE (2004) Snapshots in time: precise correlations of peat-based proxy climate records in Scotland using mid-Holocene tephras. Holocene 14:21–33CrossRefGoogle Scholar
  31. Linkrus E (1998) Põhja-Eesti rannikumadalik ja Soome lahe saared. Eesti Geograafia Selts, Tallinn, 103 ppGoogle Scholar
  32. Lowell TV, Heusser CJ, Andersen BG, Moreno PI, Hauser A, Heusser LE, Schlüchter C, Marchant DR, Denton GH (1995) Interhemispheric correlation of Late Pleistocene glacial events. Science 269:1541–1549CrossRefGoogle Scholar
  33. Lõokene E (1968a) Allikalubja levik ja iseloom Haanja kõrgustikul. TRÜ Toimetised 213:3–33Google Scholar
  34. Lõokene E (1968b) Allikalubja levik ja iseloom Otepää kõrgustikul. TRÜ Toimetised 213:34–57Google Scholar
  35. Lõokene E, Utsal K (1971) Mineral composition and age of Holocene fresh-water carbonate sediments in Southern Estonia. Acta et Comm Univ Tartuensis 6:164–194Google Scholar
  36. Mäemets A (1977) Eesti NSV järved ja nende kaitse. Valgus, Tallinn, 263 ppGoogle Scholar
  37. Männil RP (1967) Nekatorye tcherty osadkonakoplenija v pozdne- I poslelednikovyh ozerah Estonii. In: Kalesnik SV, Kvasov DD (eds) Istorija ozer severo-zapada. Materialy i simpoziuma po istorii ozer severo-zapada SSSR. Leningrad, pp 300–305 [Some features of accumulation in Lateglacial and Postglacial lakes in Estonia. In Russian]Google Scholar
  38. Meisch C (2000) Freshwater Ostracoda of western and central Europe. Süßwasserfauna von Mitteleuropa 8/3. Spektrum, Heidelberg, 522 ppGoogle Scholar
  39. Meyrick RA, Karrow PF (2007) Three detailed, radiocarbon-dated, Holocene tufa and alluvial fan mollusk successions from southern Ontario: the first in northeastern North America. Palaeogeogr Palaeoclimatol Palaeoecol 243:250–271CrossRefGoogle Scholar
  40. Milius A, Starast H, Ott K, Lindpere A (1997) Hydrochemistry of small lakes. In: Roots O, Talkop R (eds) Estonian environmental monitoring. Environment Information Centre, Tallinna Raamatutrükikoda, Tallinn, pp 78–80Google Scholar
  41. Niinemets E (1999) Ostracods. In: Miidel A, Raukas A (eds) Lake Peipsi: Geology. Sulemees Publisher, Tallinn, pp 90–97Google Scholar
  42. Niinemets E, Saarse L (2006) Holocene forest dynamics and human impact in southeastern Estonia. Veget Hist Archeobot 16:1–13CrossRefGoogle Scholar
  43. Punning J-M, Kangur M, Koff T, Possnert G (2003) Holocene lake-level changes and their reflection in the palaeolimnological records of two lakes in Northern Estonia. J Paleolimnol 29:167–178CrossRefGoogle Scholar
  44. Raukas A, Rõuk AM (1995) Pinnamood ja selle kujunemine. Kõrgustikud. In: Raukas A (ed) Eesti Loodus. Valgus, Tallinn, pp 123–130 Google Scholar
  45. Reasoner MA, Osborn G, Rutter NW (1994) Age of the crowfoot advance in the Canadian rocky mountains: a glacial event coeval with the Younger Dryas oscillation. Geology 22:439–442CrossRefGoogle Scholar
  46. Rosentau A, Vassiljev J, Saarse L, Miidel A (2007) Palaeogeographic reconstruction of proglacial lakes in Estonia. Boreas 36:211–221CrossRefGoogle Scholar
  47. Saarse L, Harrison SP (1992) Holocene lake-level changes in the eastern Baltic region. In: Kaare T, Mardiste H, Merikalju L, Punning JM (eds) Estonia. Man and nature. The Academy of Sciences of Estonia. Estonian Geographical Society, Tallinn, pp 6–20Google Scholar
  48. Saarse L, Liiva A (1995) Geology of the Äntu group of lakes. Proc Estonian Acad Sci Geol 44:119–132 Google Scholar
  49. Saarse L, Heinsalu A, Veski S (1995) Palaeoclimatic interpretation of the Holocene litho-and biostratigraphic proxy data from Estonia. In: Heikinheimo P (ed) International conference on past, present and future climate. Painatukeskus, OY, Helsinki, pp 102–105Google Scholar
  50. Savitski L, Kivit N, Boldõreva N, Saaremäe A, Savitskaja Schmied A, Jaštšuk S, Reiners N (1994) Pandivere kõrgustiku vaatluspiirkond. In: Savitskaja L (ed) Põhjavee seisund 1993. aastal. Eesti Geoloogiakeskus, Tallinn, pp 41–49Google Scholar
  51. Schmied A (1996). Põhjavee temperatuuri muutused. In: Savitskaja L (ed) Põhjavee seisund 1995. aastal. Eesti Geoloogiakeskus, Tallinn, pp 81–83Google Scholar
  52. Seglinš V, Kalnina L, Lācis A (1999) The Lubans plain, Latvia, as a reference area for long term studies of human impact on the environment. In: Miller U, Hackens T, Lang V, Raukas A, Hicks S (eds) Environmental and cultural history of the eastern Baltic region. PACT 57:105–129Google Scholar
  53. Seppä H, Poska A (2004) Holocene annual mean temperature changes in Estonia and their relationship to solar insolation and atmospheric circulation patterns. Quat Res 61:22–31CrossRefGoogle Scholar
  54. Sohar K (2004) Ida-Eesti järvede areng Pleistotseenis ja vara-Holotseenis ostrakoodiandmestiku põhjal. Thesis. University of Tartu, 55 ppGoogle Scholar
  55. Taylor KC, Lamorey GW, Doyle GA, Alley RB, Grootes PM, Mayewski PA, White JWC, Barlow LK (1993) The “flickering switch” of late Pleistocene climate change. Nature 361:432–436CrossRefGoogle Scholar
  56. Veski S (1998) Vegetation history, human impact and Palaeogeography of West Estonia. Pollen analytical studies of lake and bog sediments. Striae Societas Upsaliensis Pro Geologica Quaternaria 38, 117 ppGoogle Scholar
  57. Veski S, Seppä H, Ojala AEK (2004) Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe. Geology 32:681–684CrossRefGoogle Scholar
  58. Zernitskaya VP (1997) The evolution of lakes in the Poles’ye in the late glacial and Holocene. Quat Int 41/42:153–160CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Ecology and Earth SciencesUniversity of TartuTartuEstonia

Personalised recommendations