Skip to main content

Advertisement

Log in

Multiple ecological and hydrological changes recorded in varved sediments from Sanagak Lake, Nunavut, Canada

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A combination of biotic, sedimentary and biogeochemical proxies was used to investigate the timing and causes of post-18th century changes in the stratigraphic record of a large, deep lake on the Boothia Peninsula, Nunavut, Canada (70°15′ N, 94°30′ W). A varve chronology verified with radioisotopic dating (210Pb and 137Cs) revealed a complex pattern of environmental dynamics since c. AD 1830. An increase in the diatoms Asterionella formosa, Stephanodiscus minutulus and Cyclotella atomus and a decrease in Aulacoseira taxa in the uppermost centimetre of sediment suggested that environmental conditions have favoured the growth of smaller and/or lighter planktonic species since the 1980s. Longer term changes in some benthic species, the chrysophyte cysts to diatom valve ratio, %C, and C/N ratios suggest declined river inflow and a relative reduction in allochthonous inputs during the last century. Higher than average δ15N values in the late 19th to early 20th centuries coincide with changes in bulk carbon and nitrogen profiles, and below average values since approximately 1950 may be associated with increased atmospheric N loading or reduced productivity. Biogenic silica and organic carbon accumulation in the sediments suggest a possible decline in lake production during the 20th century that may be associated with changes in the river discharge regime. The short and long-term ecological and biogeochemical trends were also reflected in the sedimentary structure through declining varve thickness for the duration of the record and an abrupt change in sedimentology in the uppermost 1 cm, coinciding with deposition since ca. AD 1987. Together, these biological and physical changes suggest changes in hydroclimatic conditions in the 20th century, and an increase in planktonic diatom taxa since the 1980s that coincides with a distinct period of climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ACIA (2005) Arctic climate impact assessment—scientific report. In: Symon C, Arris L, Heal B (eds) Cambridge University Press, New York, http://www.acia.uaf.edu/pages/scientific.html

  • Antoniades D, Douglas MSV, Smol JP (2005a) Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments. J Paleolimnol 33:349–360

    Article  Google Scholar 

  • Antoniades D, Douglas MSV, Smol JP (2005b) Benthic diatom autecology and inference model development from the Canadian High Arctic Archipelago. J Phycol 41:30–45

    Article  Google Scholar 

  • Appleby PG, Oldfield F (1983) The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35

    Article  Google Scholar 

  • Battarbee RW, Jones VJ, Flower RJ, Cameron NG, Bennion H, Carvalho L, Juggins S (2001) Diatoms. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3: terrestrial, algal and siliceous indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 155–202

    Google Scholar 

  • Birks HJB, Jones VJ, Rose NL (2004) Recent environmental change and atmospheric contamination on Svalbard as recorded in lake sediments—synthesis and general conclusions. J Paleolimnol 31:531–546

    Article  Google Scholar 

  • Boyle JF (1995) A simple closure mechanism for a compact, large-diameter, gravity corer. J Paleolimnol 13:85–87

    Article  Google Scholar 

  • Brenner M, Whitmore TJ, Curtis JH, Hodell DA, Shelske CL (1999) Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J Paleolimnol 22:205–221

    Article  Google Scholar 

  • Camburn KE, Kingston JC, Charles DF (1984–1986) Paleoecological investigation of recent lake acidification. PIRLA Iconograph, PIRLA Unpublished Report Series, Report No. 3, Bloomington, USA, Indiana University

  • Cremer H, Melles M, Wagner B (2001) Holocene climate changes reflected in a diatom succession from Basaltsø, East Greenland. Can J Bot 79:649–656

    Article  Google Scholar 

  • Cumming BF, Wilson SE, Hall RI, Smol JP (1995) Diatoms from British Columbia (Canada) Lakes and their relationship to salinity, nutrients, and other limnological variables. Bibl Diatomol, Band 31, Berlin

  • Déry SJ, Wood EF (2005) Decreasing river discharge in northern Canada. Geophys Res Let 32:L10401, doi: 10.1029/2005GL022845

    Article  Google Scholar 

  • Douglas MSV, Smol JP (1995) Periphytic diatom assemblages from high arctic ponds. J Phycol 31:60–69

    Article  Google Scholar 

  • Douglas MSV, Smol JP, Blake Jr. W (1994) Marked Post-18th century environmental change in high-arctic ecosystems. Science 266:416–419

    Article  Google Scholar 

  • Dyke AS (1984) Quaternary geology of Boothia Peninsula and Northern District of Keewatin, Central Canadian Arctic. Geol Surv Can Mem 407:23

    Google Scholar 

  • Environment Canada (1994) Manual of analytical methods: major ions and nutrients, vol 1. National Laboratory for Environmental Testing, Canadian Centre for Inland Waters, Burlington, Ontario, pp 651

    Google Scholar 

  • Environment Canada (1999) Canadian Climate Normals 1948–1999. Prairies and Northern Weather Station Data [CD-ROM]

  • Finkelstein SA, Gajewski K (2007) A paleolimnological record of diatom community dynamics and late Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. The Holocene 9:803–812

    Article  Google Scholar 

  • Forbes AC, Lamoureux SF (2005) Climatic controls on streamflow and suspended sediment transport in three large middle arctic catchments, Boothia Peninsula, Nunavut, Canada. Arct Antarct Alp Res 37:305–315

    Article  Google Scholar 

  • Gajewski K, Hamilton PB, McNeely R (1997) A high resolution proxy-climate record from an arctic lake with annually-laminated sediments on Devon Island, Nunavut, Canada. J Paleolimnol 17:215–225

    Article  Google Scholar 

  • Hamilton PB, Gajewski K, Atkinson DE, Lean DRS (2001) Physical and chemical limnology of 204 lakes from the Canadian Arctic Archipelago. Hydrobiologia 457:133–148

    Article  Google Scholar 

  • Hermanson MH (1990) 210Pb and 137Cs chronology of sediments from small, shallow arctic lakes. Geochim Cosmochim Acta 54:1443–1451

    Article  Google Scholar 

  • Hodell DA, Schelske CL (1998) Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol Oceanogr 43:200–214

    Article  Google Scholar 

  • Hustedt F (1927–1966) Die Keiselalgen Deutschlands, Österreich und der Schweiz. In: Rabenhorst L (ed) Kryptogamen-Flora won Deutschland, Österreich und der Schweiz, Akademische Berlagsgesellschaft, Leipzig, 3 vols

  • Jones VJ, Birks HJB (2004) Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. J Paleolimnol 31:445–466

    Article  Google Scholar 

  • Joynt EH III, Wolfe AP (2001) Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Can J Fish Aquat Sci 58:1222–1243

    Article  Google Scholar 

  • Keatley BE, Douglas MSV, Smol JP (2006) Early-20th century environmental changes inferred using subfossil diaotms from a small pond on Melville Island, N.W.T., Canadian High Arctic. Hydrobiologia 553:15–26

    Article  Google Scholar 

  • Korhola A, Sorvari S, Rautio M, Appleby PG, Dearing JA, Hu Y, Rose N, Lami A, Cameron NG (2002) A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanajarvi in Finnish Lapland. J Paleolimnol 28:59–77

    Article  Google Scholar 

  • Krammer K, Lange-Bertalot H (1986–1991) Bacillariophyceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, 2(1–4), Stuttgart/Jena, Gustav Fischer Verlag

  • Laing TE, Smol JP (2003) Late Holocene environmental changes inferred from diatoms in a lake on the western Taimyr Peninsula, northern Russia. J Paleolimnol 30:231–247

    Article  Google Scholar 

  • Lamoureux SF (1994) Embedding unfrozen lake sediments for thin section preparation. J Paleolimnol 10:141–146

    Article  Google Scholar 

  • Lamoureux SF, Stewart KA, Forbes AC, Fortin D (2006) Multidecadal variations and decline in spring discharge in the Canadian middle Arctic since 1550 AD. Geophys Res Let 33:L02403, doi: 10.1029/2005GL024942

    Article  Google Scholar 

  • LeBlanc M, Gajewski K, Hamilton PB (2004) A diatom-based Holocene palaeoenvironmental record from a mid-arctic lake on Boothia Peninsula, Nunavut, Canada. Holocene 14:417–425

    Article  Google Scholar 

  • Lemmen DS, Gilbert R, Smol JP, Hall RI (1988) Holocene sedimentation in glacial Tasikutaaq Lake, Baffin Island. Can J Earth Sci 25:810–823

    Article  Google Scholar 

  • Lim DSS, Kwan C, Douglas MSV (2001) Periphytic diatom assemblages from Bathurst Island, Nunavut, Canadian High Arctic: an examination of community relationships and habitat preferences. J Phycol 37:379–392

    Article  Google Scholar 

  • Lockhart WL, Wilkinson P, Billeck BN, Danell RA, Hunt RV, Brunskill GJ, Delaronde J, St. Louis V (1998) Fluxes of mercury to lake sediments in central and northern Canada inferred from dated sediment cores. Biogeochemistry 40:163–173

    Article  Google Scholar 

  • Lotter AF, Bigler C (2000) Do diatoms in the Swiss Alps reflect the length of ice-cover? Aquat Sci 62:125–141

    Article  Google Scholar 

  • Maxwell B (1992) Arctic climate: potential for change under global warming. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, San Diego, pp 11–34

    Google Scholar 

  • Meyers PA, Ishiwatari R (1993) Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental change using lake sediments, vol 2: physical and geochemical methods. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 239–269

    Google Scholar 

  • Michel TJ, Saros JE, Interlandi SJ, Wolfe AP (2006) Resource requirements of four freshwater diatom taxa determined by in situ growth bioassays using natural populations from alpine lakes. Hydrobiologia 568:235–243

    Article  Google Scholar 

  • Michelutti N, Douglas MSV, Smol JP (2003a) Diatom response to recent climatic change in a high arctic lake (Char Lake, Cornwallis Island, Nunavut). Global Planet Change 38:257–271

    Article  Google Scholar 

  • Michelutti N, Holtham AJ, Douglas MSV, Smol JP (2003b) Periphytic diatom assemblages from ultra-oligotrophic and UV transparent lakes and ponds on Victoria Island and comparisons with other diatom surveys in the Canadian Arctic. J Phycol 39:465–480

    Article  Google Scholar 

  • Moore JW (1974a) The benthic algae of southern Baffin Island. I. Epipelic communities in rivers. J Phycol 10:50–57

    Google Scholar 

  • Moore JW (1974b) Benthic algae of southern Baffin Island. II. The Epipelic communities of temporary ponds. J Ecol 62:808–819

    Google Scholar 

  • Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36:1415–1426

    Article  Google Scholar 

  • Moser KA, Smol JP, MacDonald GM, Larsen CPS (2002) 19th century eutrophication of a remote boreal lake: a consequence of climate warming? J Paleolimnol 28:269–281

    Article  Google Scholar 

  • Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings S, Lamoureux S, Lasca A, MacDonald G, Moore J, Retelle M, Smith S, Wolfe A, Zielinski G (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    Article  Google Scholar 

  • Patrick R, Reimer CW (1966) The diatoms of the United States, exclusive of Alaska and Hawaii, Vol. 1: Fragilariaceae, Eunotiaceae, Achnanthaceae, Naviculaceae. Academy of Natural Sciences of Philadelphia Monograph No. 13, Philadelphia

    Google Scholar 

  • Patrick R, Reimer C (1975) The diatoms of the United States, vol 2: Entomoneidaceae, Cymbellaceae, Gomphonemaceae, Epithemiaceae. The Academy of Natural Sciences of Philadelphia, Philadelphia

    Google Scholar 

  • Perren BB, Bradley RS, Francus P (2003) Rapid Lacustrine response to recent high arctic warming: a diatom record from Sawtooth Lake, Ellesmere Island, Nunavut. Arct Antarct Alp Res 35:271–278

    Article  Google Scholar 

  • Petterson G, Renberg I, Geladi P, Lindberg A, Lindgren F (1993) Spatial uniformity of sediment accumulation in varved lake sediments in northern Sweden. J Paleolimnol 9:195–208

    Article  Google Scholar 

  • Rautio MS, Sorvari S, Korhola A (2000) Crustacean zooplankton and diatom communities, their seasonal variability, and representation in the sediments of subarctic Lake Saanajärvi. J Limnol 59(supp. 1):81–96

    Google Scholar 

  • Rühland K, Priesnitz A, Smol JP (2003a) Paleolimnological Evidence from Diatoms for Recent Environmental Changes in 50 Lakes across Canadian Arctic Treeline. Arct Antarct Alp Res 35(1):110–123

    Article  Google Scholar 

  • Rühland K, Smol JP, Pienitz R (2003b) Ecology and spatial distribution of surface-sediment diatoms from 77 lakes in the subarctic Canadian treeline region. Can J Bot 81:57–73

    Article  Google Scholar 

  • Rühland K, Smol JP (2005) Diatom shifts as evidence for recent Subarctic warming in a remote tundra lake, NWT, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 226:1–16

    Article  Google Scholar 

  • Saros JE, Michel TJ, Interlandi SJ, Wolfe AP (2005) Resource requirements of Asterionella formosa and Fragilaria crotonensis in oligotrophic alpine lakes: implications for recent phytoplankton community reorganizations. Can J Fish Aquat Sci 62:1681–1689

    Article  Google Scholar 

  • Smol JP (1983) Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can J Bot 61:2195–2204

    Google Scholar 

  • Smol JP (1985) The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123:199–208

    Article  Google Scholar 

  • Smol JP (1988) Paleoclimate proxy data from freshwater arctic diatoms. Verh Verein Internat Limnol 23:837–844

    Google Scholar 

  • Smol JP, Wolfe AP, Birks HJB, Douglas MSV, Jones VJ, Korhola A, Pienitz R, Rühland K, Sorvari S, Antoniades D, Brooks SJ, Fallu M-A, Hughes M, Keatley BE, Laing TE, Michelutti N, Nazorova L, Nyman M, Paterson AM, Perren B, Quinlan R, Rautio M, Saulnier-Talbot E, Siitonen S, Solovieva N, Weckstrom J (2005) Climate-driven regime shifts in the biological communities of arctic lakes. Proc Natl Acad Sci 102:4397–4402

    Article  Google Scholar 

  • Sorvari S, Korhola A (1998) Recent diatom assemblage changes in subarctic lake Saanajarvi, NW Finnish Lapland, and their paleoenvironmental implications. J Paleolimnol 20:205–215

    Article  Google Scholar 

  • Sorvari S, Korhola A, Thompson R (2002) Lake diatom response to recent Arctic warming in Finnish Lapland. Glob Change Biol 8:171–181

    Article  Google Scholar 

  • Stewart KA, Lamoureux SF, Forbes AC (2005) Hydrological controls on the diatom assemblage of a seasonal arctic river: Boothia Peninsula, Nunavut, Canada. Hydrobiologia 544:259–270

    Article  Google Scholar 

  • Stoermer EF, Smol JP (1999) Applications and uses of diatoms. In: Stoermer EF, Smol JP (eds) The diatoms: applications for the environmental and earth sciences, Cambridge University Press, Cambridge, pp 3–8

    Google Scholar 

  • Van de Vijver B, Van Kerckvoorde A, Beyens L (2003) Freshwater and terrestrial moss diatom assemblages of the Cambridge Bay area, Victoria Island (Nunavut, Canada). Nova Hedwigia 76:225–243

    Article  Google Scholar 

  • Wilson SE, Walker IR, Mott RJ, Smol JP (1993) Climatic and limnological changes associated with the Younger Dryas in Atlantic Canada. Clim Dyn 8:177–187

    Article  Google Scholar 

  • Wolfe AP (1994) Late Wisconsian and Holocene diatom stratigraphy from Amorok Lake, Baffin Island, N.W.T., Canada. J Paleolimnol 10:129–139

    Article  Google Scholar 

  • Wolfe AP (2000) A 6500-year diatom record from southwestern Fosheim Peninsula, Ellesmere Island, Nunavut. In: Garneau M, Alt BT (eds) Environmental response to climate change in the Canadian High Arctic. Geol Surv Can Bull 529:249–256

  • Wolfe AP (2003) Diatom community responses to late-Holocene climatic variability, Baffin Island, Canada: a comparison of numerical approaches. Holocene 13:29–37

    Google Scholar 

  • Wolfe AP, Baron JS, Cornett RJ (2001) Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). J Paleolimnol 25:1–7

    Article  Google Scholar 

  • Wolfe AP, Miller GH, Olsen CA, Forman SL, Doran PT, Holmgren SU (2004) Geochronology of High Latitude Lake Sediments. In: Pienitz R, Douglas MSV, Smol JP (eds) Long-term environmental change in Arctic and Antarctic Lakes. Developments in Paleoenvironmental Research vol 8. Springer, Dordrecht, pp 19–52

    Chapter  Google Scholar 

  • Wolfe AP, Cooke CA, Hobbs WO (2006) Are current rates of atmospheric nitrogen deposition influencing lakes in the eastern Canadian Arctic? Arct Antarct Alp Res 38:465–476

    Article  Google Scholar 

  • Zeeb BA, Smol JP (2001) Chrysophyte scales and cysts. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments, vol 3. Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, pp 203–223

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Natural Sciences and Engineering Research Council (NSERC) Discovery Grant and PREA (Ontario Ministry of Energy) funding to S.F.L., and Northern Scientific Training Program funding and an Ontario Graduate Scholarship in Science and Technology to K.A.S. Logistical support was provided by Polar Continental Shelf Project (PCSP contribution 02104), Natural Resources Canada. This work would not have been possible without the support of the Hamlet of Taloyoak and the Nunavut Research Institute, Iqaluit. Field assistance was ably provided by A. Forbes and L. Colgan. Laboratory facilities and technical assistance were generously provided by J. P. Smol and PEARL (Queen’s University). Chlorophyll analysis was kindly conducted by P. Hamilton, Canadian Museum of Nature. Comments on earlier drafts by J. P. Smol and D. Antoniades are gratefully acknowledged, and we thank A.P. Wolfe and an anonymous reviewer for their valuable comments on the current manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailey A. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, K.A., Lamoureux, S.F. & Finney, B.P. Multiple ecological and hydrological changes recorded in varved sediments from Sanagak Lake, Nunavut, Canada. J Paleolimnol 40, 217–233 (2008). https://doi.org/10.1007/s10933-007-9153-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-007-9153-7

Keywords

Navigation