Advertisement

Journal of Paleolimnology

, Volume 40, Issue 1, pp 195–215 | Cite as

A statistical approach to disentangle environmental forcings in a lacustrine record: the Lago Chungará case (Chilean Altiplano)

  • Santiago Giralt
  • Ana Moreno
  • Roberto Bao
  • Alberto Sáez
  • Ricardo Prego
  • Blas L. Valero-Garcés
  • Juan José Pueyo
  • Penélope González-Sampériz
  • Conxita Taberner
Original Paper

Abstract

A high resolution multiproxy study (magnetic susceptibility, X-ray diffraction, XRF scanner, gray-colour values, Total Organic Carbon, Total Inorganic Carbon, Total Carbon and Total Biogenic Silica) of the sedimentary infill of Lago Chungará (northern Chilean Altiplano) was undertaken to unravel the environmental forcings controlling its evolution using a number of different multivariate statistical techniques. Redundancy analyses enabled us to identify the main provenance of the studied proxies whereas stratigraphically unconstrained cluster analyses allowed us to distinguish the “outsiders” as result of anomalous XRF scanner acquisitions. Principal Component Analysis (PCA) was employed to identify and isolate the main underlying environmental gradients that characterize the sedimentary infill of Lago Chungará. The first eigenvector of the PCA could be interpreted as an indicator of changes in the input of volcaniclastic material, whereas the second one would indicate changes in water availability. The chronological model of this sedimentary sequence was constructed using 17 AMS 14C and 1 238U/230Th dates in order to characterize the volcaniclastic input and the changes in water availability in the last 12,300 cal years BP.

Comparison of the reconstructed volcaniclastic input of Lago Chungará with the dust particle record from the Nevado Sajama ice core suggested that the Parinacota volcano eruptions were the main source of dust during the mid and Late Holocene rather than the dry out lakes as has previously been pointed out. The comparison of the water availability reconstruction of Lago Chungará with three of the most detailed paleoenvironmental records of the region (Paco Cocha, Lake Titicaca and Salar Uyuni) showed an heterogeneous (and sometimes contradictory) temporal and spatial pattern distribution of moisture. Although the four reconstructions showed a good correlation, each lacustrine ecosystem responded differently to the moisture oscillations that affected this region. The variations in the paleoenvironmental records could be attributed to the dating uncertainities, lake size, lake morphology, catchment size and lacustrine ecosystem responses to the abrupt arid events.

Keywords

Chilean Altiplano Lago Chungará Holocene Statistical analyses Principal Component Analysis Redundancy Analysis Stratigraphically unconstrained cluster analysis Water availability reconstruction 

Notes

Acknowledgements

We are indebted to D. Schnurremberger, M. Shapley and A. Myrbo of the Limnological Research Center staff for their field assistance during the coring campaign. Larry Edwards (University of Minnesota) and Rogert O. Gibert (University of Barcelona) are thanked for the 238U/230Th TIMS dates. This research work was funded by the projects BTE2001-3225, BTE2001-5257-E and GCL2004-00683 from the Spanish Science and Technology Ministry. We are indebted to Tomasz Golsar (Poznan Radiocarbon Laboratory) for helping with the calculation of the present-day reservoir effect of Lago Chungará and to George von Knorring and an anonymous referee for improving the final version of the paper.

References

  1. Abbott M, Wolfe B, Wolfe A et al (2003) Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeogr Palaeoclimatol Palaeoecol 194:123–138CrossRefGoogle Scholar
  2. Argollo J, Mourguiart P (2000) Late Quaternary climate history of the Bolivian Altiplano. Quat Int 72:37–51CrossRefGoogle Scholar
  3. Baker P, Rigsby C, Seltzer G et al (2001a) Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano. Nature 409:698–701CrossRefGoogle Scholar
  4. Baker P, Seltzer G, Fritz S et al (2001b) The history of South American tropical climate for the past 25,000 years. Science 291:640–643CrossRefGoogle Scholar
  5. Battarbee R (2000) Palaeolimnological approaches to climate change, with special regard to biological record. Quat Sci Rev 19:107–124CrossRefGoogle Scholar
  6. Björck S, Rittenour T, Rosén P et al (2006) A holocene lacustrine record in the central North Atlantic: proxies for volcanic activity, short-term NAO mode variability, and long-term precipitation changes. Quat Sci Rev 25:9–32CrossRefGoogle Scholar
  7. Camarero L, Catalan J, Pla S et al (1995) Remote mountain lakes as indicators of diffuse acidic and organic pollution in the Iberian Peninsula (AL:PE2 studies). Water Air Soil Pollut 85:487–492CrossRefGoogle Scholar
  8. Carrera G, Fernández P, Grimalt J et al (2002) Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe. Environ Sci Technol 36:2581–2588CrossRefGoogle Scholar
  9. Chung F (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures: II. Adiabatic principles of X-ray diffraction analysis of mixtures. J Appl Crystallogr 7:526–531CrossRefGoogle Scholar
  10. Clavero J, Sparks R, Huppert H et al (2002) Geological constraints on the emplacement mechanism of the Parinacota debris avalanche, northern Chile. Bull Volcanol 64:40–54CrossRefGoogle Scholar
  11. Conley D, Schelske C (2001) Biogenic silica. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, Algal and Siliceous Indicators, vol 3. Kluwer Academic Publishers, Dordrecht, pp 281–293CrossRefGoogle Scholar
  12. DeSilva S, Francis P (1991) Volcanoes of the Central Andes. Springer-VerlagGoogle Scholar
  13. Edwards R, Chen J, Wasserburg G (1986) 238U–234U–230Th–232Th systematics and the precise measurements of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192Google Scholar
  14. Fritz S (1996) Paleolimnological records of climatic change in North America. Limnol Oceanogr 41:882–889CrossRefGoogle Scholar
  15. Geyh M, Grosjean M (2000) Establishing a reliable chronology of lake level changes in the Chilean Altiplano: are sult of close collaboration between geochronologists and geomorphologists. Zbl Geol Paläont Teil 1:985–995Google Scholar
  16. Geyh M, Grosjean M, Núñez L et al (1999) Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama Desert, Northern Chile. Quat Res 52:143–153CrossRefGoogle Scholar
  17. Geyh M, Schotterer U, Grosjean M (1998) Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40:921–931Google Scholar
  18. Giralt S, Julià R (2003) Water level reconstruction in closed lakes based on the mineralogical composition of sediments. In: Valero-Garcés BL (ed) Limnogeology in Spain: a tribute to Kerry Kelts. Consejo Superior de Investigaciones Científicas, Madrid, pp 305–325Google Scholar
  19. Goslar T, van der Knaap W, Hicks S et al (2005) Radiocarbon dating of modern peat profiles: pre- and postbomb 14C variations in the construction of age-depth models. Radiocarbon 47:115–134Google Scholar
  20. Grosjean M, Cartajena I, Geyh M et al (2003) From proxy data to paleoclimate interpretation: the mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeogr Palaeoclimatol Palaeoecol 194:247–258CrossRefGoogle Scholar
  21. Grosjean M, van Leeuwen J, van der Knaap W et al (2001) A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23S), northern Chile. Glob Planet Change 28:35–51CrossRefGoogle Scholar
  22. Hansen H, Grashoff K (1983) Automated chemical analysis In: Grashoff M, Ehrhardt M, Kremlin K (eds) Methods of seawater analysis. Verlag Chemie, Weinheim, pp 368–376Google Scholar
  23. Heegaard E, Birks H, Telford R (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618CrossRefGoogle Scholar
  24. Hennebert M, Lees A (1991) Environmental gradients in carbonate sediments and rocks detected by correspondence analysis: examples from the Recent of Norway and the Dinantian of southwest England. Sedimentology 38:623–642CrossRefGoogle Scholar
  25. Herrera C, Pueyo J, Sáez A et al (2006) Relation of surface and underground waters in chungará and cotacotani lake districts, northern Chile: an isotopic study. Rev Geol Chile 33:299–325CrossRefGoogle Scholar
  26. Hora J, Singer B, Wörner G (2007) Volcano eruption and eruptive flux on the thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar constrains from Volcán Parinacota, Chile. Geol Surv Am Bull 119:343–362CrossRefGoogle Scholar
  27. Hua Q, Barbetti M (2004) Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46:1273–1298Google Scholar
  28. Hurley C (2004) gclus: Clustering Graphics. R package version 1.2Google Scholar
  29. Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New YorkGoogle Scholar
  30. Latorre C, Betancourt J, Rylander K et al (2003) A vegetation history from the arid prepuna of northern Chile (22–23°S) over the last 13,500 years. Paleogeogr Paleoclimatol Paleoecol 194:223–246CrossRefGoogle Scholar
  31. Latorre C, Betancout J, Arroyo M (2006) Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22°S) of Northern Chile. Quat Res 65:450–466CrossRefGoogle Scholar
  32. Marchant R, Hooghiemstra H (2004) Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth-Sci Rev 66:217–260CrossRefGoogle Scholar
  33. Moreno A, Giralt S, Valero-Garcés B et al (2007) Effects of climate, lake productivity and volcanic influences unravelled for last 13000 years in the Central Chilean Altiplano: a high-resolution geochemical study. Quat Int 161:4–21CrossRefGoogle Scholar
  34. Mortlock R, Froelich P (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res 36:1415–1426CrossRefGoogle Scholar
  35. Mühlhauser H, Hrepic N, Mladinic P et al (1995) Water quality and limnological features of a high altitude Andean lake, Chungará, in northern Chile. Rev Chil Hist Nat 68:341–349Google Scholar
  36. Oksanen J, Kindt R, O’Hara R (2005) vegan: Community Ecology. Package R version 1:6–9Google Scholar
  37. Pla S, Catalan J (2005) Chrysophyte cysts from lake sediments reveal the submillennial winter/spring climate variability in the northwestern Mediterranean region throughout the Holocene. Clim Dynam 24:263–278CrossRefGoogle Scholar
  38. Placzek C, Quade J, Patchett P (2006) Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geol Soc Am Bull 118:515–532CrossRefGoogle Scholar
  39. Rasband W (1997–2004) ImageJ. National Institutes of Health, Bethesda, Maryland, USAGoogle Scholar
  40. R Development Core Team (2007) A language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria ISBN 3-900051-07-0Google Scholar
  41. Reimer P, Baillie M, Bard E et al (2004a) IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46:1029–1058Google Scholar
  42. Reimer P, Brown T, Reimer R (2004b) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:1299–1304Google Scholar
  43. Rodó X, Giralt S, Burjachs F et al (2002) High-resolution saline lake sediments as enhanced tools for relating proxy paleolake records to recent climatic data series. Sed Geol 148:203–220CrossRefGoogle Scholar
  44. Rowe H, Guildersonc T, Dunbar R et al (2003) Late Quaternary lake-level changes constrained by radiocarbon and stable isotope studies on sediment cores from Lake Titicaca, South America. Glob Planet Change 38:273–290CrossRefGoogle Scholar
  45. Sáez A, Valero-Garcés B, Moreno A et al (2007) Lacustrine sedimentation in active volcanic settings: the Late Quaternary depositional evolution of Lake Chungará (northern Chile). Sedimentology 54:1187–1218Google Scholar
  46. Schwalb A, Burns S, Kelts K (1999) Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano lakes. Paleogeogr Paleoclimatol Paleoecol 148:153–168CrossRefGoogle Scholar
  47. Stuiver M, Reimer P, Bard E et al (1998) INTCAL98 radiocarbon age calibration, 24000-0 cal BP. Radiocarbon 40:1041–1083Google Scholar
  48. Tapia P, Fritz S, Baker P et al (2003) A Late Quaternary diatom record of tropical climatic history from Lake Titicaca (Bolivia/Perú). Palaeogeogr, Palaeoclimatol Palaeoecol 194:139–164CrossRefGoogle Scholar
  49. ter Braak C (1987) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Centre for Agricultural Publishing and Documentation (Pudoc), Wageningen, pp 91–173Google Scholar
  50. Thompson L, Davis M, Thompson E et al (1998) A 25,000 year tropical climate history from Bolivian ice cores. Science 282:1858–1864CrossRefGoogle Scholar
  51. Valero-Garcés B, Delgado-Huertas A, Navas A et al (2003) Patterns of regional hydrological variability in central-southern Altiplano (18°–26°) lakes during the last 500 years. Palaeogeogr Palaeoclimatol Palaeoecol 194:319–338CrossRefGoogle Scholar
  52. Valero-Garcés B, Grosjean M, Kelts K et al (1999) Holocene lacustrine deposition in the Atacama Altiplano: facies models, climate and tectonic forcing. Palaeogeogr Palaeoclimatol Palaeoecol 151:101–125CrossRefGoogle Scholar
  53. Valero-Garcés B, Grosjean M, Messerli B et al (2000) Late Quaternary lacustrine deposition in the Chilean Altiplano (18–28°S). In: Gierlowski-Kordesch EH, Kelts K (eds) Lake basins trough space and time. AAPG Stud Geol 46:625–639Google Scholar
  54. Valero-Garcés B, Grosjean M, Schwalb A et al (1996) Limnogeology of Laguna Miscanti: evidence of mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). J Paleolimnol 16:1–21CrossRefGoogle Scholar
  55. Vink A, Baumann K, Böckel B et al (2003) Coccolithophorid and dinoflagellate synecology in the South and Equatorial Atlantic: improving the paleoecological significance of phytoplanktonic microfossils. In: Wefer G, Mulitza S, Ratmeyer V (eds) The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer-Verlag, Berlin, pp 101–120Google Scholar
  56. Vlag P, Kruiver P, Dekkers M (2004) Evaluating climate change by multivariate statistical techniques on magnetic and chemical properties of marine sediments (Azores region). Palaeogeogr Palaeoclimatol Palaeoecol 212:23–44Google Scholar
  57. Wörner G, Hammerschmidt K, Henjes-Huns F et al (2000) Geochronology (40Ar/39Ar, K-Ar and He-exposure ages) of Cenozoic magmatic rocks from Northern Chile (18°–22°S): implications for magmatism and tectonic evolution of the central Andes. Rev Geol Chile 27:205–240Google Scholar
  58. Wörner G, Harmon R, Davidson J et al (1988) The Nevados de Payachata volcanic region (18°S/69°W, N. Chile). I. Geological, geochemical, and isotopic observations. Bull Volcanol 50:287–303CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Santiago Giralt
    • 1
  • Ana Moreno
    • 2
  • Roberto Bao
    • 3
  • Alberto Sáez
    • 4
  • Ricardo Prego
    • 5
  • Blas L. Valero-Garcés
    • 6
  • Juan José Pueyo
    • 7
  • Penélope González-Sampériz
    • 6
  • Conxita Taberner
    • 8
  1. 1.Institute of Earth Sciences “Jaume Almera” (CSIC)BarcelonaSpain
  2. 2.Limnological Research Center, Department of Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA
  3. 3.Facultade de CienciasUniversidade A CoruñaA CorunaSpain
  4. 4.Department of Stratigraphy, Paleontology and Marine Geosciences, Faculty of GeologyUniversity of BarcelonaBarcelonaSpain
  5. 5.Marine Biochemistry Research Group, Marine Research Institute (CSIC)VigoSpain
  6. 6.Pyrenean Institute of Ecology (CSIC)ZaragozaSpain
  7. 7.Department of Geochemistry, Faculty of GeologyUniversity of BarcelonaBarcelonaSpain
  8. 8.Shell International Exploration and Production B.V., Carbonate TeamRijswijkThe Netherlands

Personalised recommendations