Skip to main content

Reconstructing changes in macrophyte cover in lakes across the northeastern United States based on sedimentary diatom assemblages

Abstract

Macrophytes are a critical component of lake ecosystems affecting nutrient and contaminant cycling, food web structure, and lake biodiversity. The long-term (decades to centuries) dynamics of macrophyte cover are, however, poorly understood and no quantitative estimates exist for pre-industrial (pre-1850) macrophyte cover in northeastern North America. Using a 215 lake dataset, we tested if surface sediment diatom assemblages significantly differed among lakes that have sparse (<10% cover; group 1), moderate (10–40% cover; group 2) or extensive (>40% cover; group 3) macrophyte cover. Analysis of similarity indicated that the diatom assemblages of these a priori groups of macrophyte cover were significantly different from one another (i.e., difference between: groups 1 and 3, R statistic = 0.31, P < 0.001; groups 1 and 2, R statistic = 0.049, P < 0.01; groups 3 and 2, R statistic = 0.112, P < 0.001). We then developed an inference model for macrophyte cover from lakes classified as sparse or extensive cover (145 lakes) based on the surface sediment diatom assemblages, and applied this model using the top-bottom paleolimnological approach (i.e., comparison of recent sediments to pre-disturbance sediments). We used the second axis of our correspondence analysis, which significantly divided sparse and extensive macrophyte cover sites, as the independent variable in a logistic regression to predict macrophyte cover as either sparse or extensive. Cross validation, using 48 randomly chosen sites that were excluded from model development, indicated that our model accurately predicts macrophyte cover 79% of the time (r 2 = 0.32, P < 0.001). When applied to the top and bottom sediment samples, our model predicted that 12.5% of natural lakes and 22.4% of reservoirs in the dataset have undergone a ≥30% change in macrophyte cover. For the sites with an inferred change in macrophyte cover, the majority of natural lakes (64.3%) increased in cover, while the majority of reservoirs (87.5%) decreased in macrophyte cover. This study demonstrates that surface sediment diatom assemblages from profundal zones differ in lakes based on their macrophyte cover and that diatoms are useful indicators for quantitatively reconstructing changes in macrophyte cover.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bachmann RW, Horsburgh CA, Hoyer MV, Mataraza LK, Canfield DE Jr (2002) Relations between trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470:219–234

    Article  Google Scholar 

  • Baker JR, Peck DV, Sutton DW (eds) (1997) Environmental monitoring and assessment program surface waters: field operations manual for lakes. EPA/620/R-97/001. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Birks HH (2000) Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early Holocene. J Paleolimnol 23:7–19

    Article  Google Scholar 

  • Brenner M, Hodell D, Leyden B, Curtis J, Kenney W, Gu B, Newman J (2006) Mechanisms for organic matter and phosphorus burial in sediments of a shallow, subtropical, macrophyte dominated lake. J Paleolimnol 35:129–148

    Article  Google Scholar 

  • Brodersen KP, Odgaard BV, Vestergaard O, Anderson NJ (2001) Chironomid stratigraphy in the shallow and eutrophic Lake Søbygaard, Denmark: chironomid-macrophyte co-occurrence. Freshwater Biol 46:253–267

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth

    Google Scholar 

  • Davidson TA (2006) Zooplankton ecology and palaeoecology in nutrient enriched shallow lakes. PhD thesis, University College of London, 191 pp

  • Davidson TA, Sayer CD, Bennion H, David C, Rose N, Wade MP (2005) A year comparison of historical, macrofossil and pollen records of aquatic plants in a shallow lake. Freshwater Biol 50:1671–1686

    Article  Google Scholar 

  • Denys L (2006) Calibration of littoral diatoms to water chemistry in standing fresh waters (Flanders, Lower Belgium): inference models for historical sediment assemblages. J Paleolimnol 35:763–787

    Article  Google Scholar 

  • Dixit SS, Smol JP, Charles DF, Hughes RM, Paulsen SG, Collins GB (1999) Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can J Fish Aquat Sci 56:131–152

    Article  Google Scholar 

  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, Middelburg JJ (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397

    Article  Google Scholar 

  • Egertson JC, Kopaska JA, Downing JA (2004) A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 524:145–156

    Article  Google Scholar 

  • Glew JR (1989) A new trigger mechanism for sediment samplers. J Paleolimnol 2:241–243

    Article  Google Scholar 

  • Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K (eds) (1998) The structuring role of submerged macrophytes in lakes. Ecological studies, Vol. 131. Springer, New York, 423 pp

    Google Scholar 

  • Larsen DP, Stevens DL, Selle AR, Paulsen SG (1991) Environmental monitoring and assessment program, EMAP-Surface Waters: a northeast lakes pilot. Lake Reservoir Manage 7:1–11

    Article  Google Scholar 

  • McGowan S, Leavitt PR, Hall RI, Anderson NJ, Jeppesen E, Odgaard BV (2005) Controls of algal abundance and community composition during ecosystem state change. Ecology 86:2200–2211

    Article  Google Scholar 

  • Moss B (1978) The ecological history of a mediaeval man-made lake. Hickling Broad, Norfolk, United Kingdom. Hydrobiologia 60:23–32

    Article  Google Scholar 

  • Odgaard BV, Rasmussen P (2001) The occurrence of egg-cocoons of the leech Piscicola geometra (L.) in recent lake sediments and their relationship with remains of submerged macrophytes. Arch Hydrobiol 152:671–686

    Google Scholar 

  • OECD (1982) Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, 154 pp

    Google Scholar 

  • Oertli B, Joye DA, Castella E, Juge R, Cambin D, Lachavanne J-B (2002) Does size matter? The relationship between pond area and biodiversity. Biol Conserv 104:59–70

    Article  Google Scholar 

  • Ogden RW (2000) Modern and historical variation in aquatic macrophyte cover of billabongs associated with catchment development. Regul Rivers: Res Manage 16:497–512

    Article  Google Scholar 

  • Osborne PE, Tigar BJ (1992) Interpreting bird atlas data using logistic models: an example from Lesotho, Southern Africa. J Appl Ecol 29:55–62

    Article  Google Scholar 

  • RAPPEL (2004) Un portrait alarmant de l’état des lacs et des limitations d’usages reliées aux plantes aquatiques et aux sediments Bilan (1996–2003). 366 pp

  • Rasmussen P, Anderson NJ (2005) Natural and anthropogenic forcing of aquatic macrophyte development in a shallow Danish lake during the last 7000 years. J Biogeogr 32:1993–2005

    Article  Google Scholar 

  • Reavie ED, Smol JP (1997) Diatom-based model to infer past littoral habitat characteristics in the St. Lawrence River. J Great Lakes Res 23:339–348

    Article  Google Scholar 

  • Reavie ED, Smol JP, Carigan R, Lorrain S (1998) Diatom paleolimnology of two fluvial lakes in the St. Lawrence River: a reconstruction of environmental changes during the last century. J Phycol 34:446–456

    Article  Google Scholar 

  • Sand-Jensen K, Riis T, Vestergaard O, Larsen SE (2000) Macrophyte decline in Danish lakes and streams over the past 100 years. J Ecol 88:1030–1040

    Article  Google Scholar 

  • Sayer C, Roberts N, Sadler J, David C, Wade PM (1999) Biodiversity changes in a shallow lake ecosystem: a multi-proxy palaeolimnological analysis. J Biogeogr 26:97–114

    Article  Google Scholar 

  • Scheffer M (1989) Alternative stable states in eutrophic, shallow freshwater systems: a minimal model. Hydrobiol Bull 23:73–83

    Article  Google Scholar 

  • Scheffer M (1998) Ecology of shallow lakes. Chapman & Hall, London, 357 pp

    Google Scholar 

  • Scheffer M, Hosper SH, Meijer M-L, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  Google Scholar 

  • Scheffer M, van Geest GJ, Zimmer K, Jeppesen E, Søndergaard M, Butler MG, Hanson MA, Declerck S, De Meester L (2006) Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112:227–231

    Article  Google Scholar 

  • Smol JP (2002) Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold Publisher, London, UK. Co-published by Oxford University Press, New York, NY

  • Tan OC, Özesmi U (2006) A generic shallow lake ecosystem model based on collective expert knowledge. Hydrobiologia 563:125–142

    Article  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA, 500 pp

    Google Scholar 

  • Väliranta MM (2006) Long-term changes in aquatic plant species composition in North-eastern European Russia and Finnish Lapland, as evidenced by plant macrofossil analysis. Aquat Bot 85:224–232

    Article  Google Scholar 

  • van Dam H, Mertens A (1993) Diatoms on herbarium macrophytes as indicators for water quality. Hydrobiologia 269/270:437–445

    Article  Google Scholar 

  • Waisanen PJ, Bliss NB (2002) Changes in population and agricultural land in conterminous United States counties, 1790 to 1997. Global Biogeochem Cycles 16:1137

    Article  CAS  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems. 3rd ed. Academic Press, San Diego, USA

    Google Scholar 

  • Zhao Y, Sayer CD, Birks HH, Hughes M, Peglar SM (2006) Spatial representation of aquatic vegetation by macrofossils and pollen in a small and shallow lake. J Paleolimnol 35:335–350

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Sushil Dixit and John Stoddard for answering our questions about the EMAP-SW dataset and Drs. Yves Prairie and Euan Reavie for stimulating discussions. We would also like to acknowledge Dr. Carl Sayer and an anonymous reviewer for providing comments that improved an original version of this manuscript. This project was funded through grants from the Natural Sciences and Engineering Research Council, le Fonds Quebecois de Recherche sur la Nature et les Technologies and McGill University awarded to I. Gregory-Eaves and a Vineberg graduate scholarship awarded to J. Vermaire. This study is a contribution to the Groupe de Recherche Interuniversitaire en Limnologie. Although some data described in this article have been funded wholly or in part by the U.S. Environmental Protection Agency through its EMAP Surface Waters Program, it has not been subjected to Agency review, and therefore does not necessarily reflect the views of the Agency and no official endorsement of the conclusions should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse C. Vermaire.

Appendix 1

Appendix 1

Common diatom taxa and their maximum and mean relative abundance (%) along with number of occurrences in lakes with extensive (Ext, >40% cover) and sparse (Spar, <10% cover) macrophyte cover. Correspondence analysis axis 2 species scores (CA axis 2) and the effective number of occurrences of each taxa for all sites (N2) are also shown

# Taxon name Maximum occurrences Mean occurrence Number of occurrences CA axis 2 N2
Ext Spar Ext Spar Ext Spar
1 Achnanthes austriaca var. helvetica 0.6 2.9 0.1 0.1 9 9 −0.9 8.6
2 Achnanthes bicapitata 0.6 1.8 0.0 0.1 6 19 −1.0 12.8
3 Achnanthes detha 6.3 4.9 0.7 0.7 33 72 −0.6 49.8
4 Achnanthes didyma 0.4 1.2 0.0 0.1 5 22 −1.8 15.5
5 Achnanthes exigua 6.3 1.6 0.3 0.1 14 14 2.0 13.9
6 Achnanthes flexella 0.5 2.1 0.0 0.1 7 21 0.3 14.1
7 Achnanthes helvetica 1.6 2.6 0.2 0.2 18 42 −0.5 32.0
8 Achnanthes lanceolata 17.2 7.8 0.6 0.2 23 20 1.5 17.7
9 Achnanthes lanceolata var. rostrata 7.5 1.2 0.2 0.1 10 11 2.1 7.0
10 Achnanthes levanderi 1.0 1.4 0.0 0.1 3 11 −2.4 6.3
11 Achnanthes linearis 3.8 4.5 0.6 0.3 30 41 0.2 38.5
12 Achnanthes marginulata 1.7 2.7 0.2 0.2 18 45 −0.7 33.9
13 Achnanthes microcephala 2.6 1.2 0.1 0.0 5 7 0.8 5.7
14 Achnanthes minutissima 56.0 44.7 11.3 5.7 43 87 0.4 62.7
15 Achnanthes suchlandtii 1.8 1.5 0.1 0.1 7 22 −1.1 18.7
16 Actinella punctata 2.1 3.7 0.2 0.1 9 7 1.0 9.2
17 Amphipleura pellucida 1.2 0.4 0.1 0.0 12 8 1.9 15.4
18 Amphora ovalis 15.2 3.0 0.7 0.2 27 31 1.9 21.8
19 Amphora perpusilla 6.8 5.2 0.3 0.1 11 8 2.5 8.8
20 Anomoeoneis serians 1.9 0.7 0.1 0.0 6 7 0.6 7.4
21 Anomoeoneis serians var. brachysira 6.1 12.6 0.6 0.5 21 40 0.1 27.4
22 Anomoeoneis vitrea 11.2 16.9 1.9 1.3 34 69 0.3 45.1
23 Asterionella formosa 50.4 55.7 1.9 6.7 15 75 −1.3 41.5
24 Asterionella ralfsii var. americana >45 μm 25.9 67.3 1.0 2.6 11 40 −1.0 15.5
25 Aulacoseira ambigua 33.1 44.3 3.3 5.1 34 74 −0.7 54.0
26 Aulacoseira crassipunctata 24.0 15.6 1.1 0.2 5 1 1.6 2.5
27 Aulacoseira distans 21.4 10.3 1.4 0.8 20 46 −0.7 30.4
28 Aulacoseira distans var. humilis 3.4 3.3 0.1 0.1 5 8 −0.5 7.2
29 Aulacoseira distans var. nivalis 1.5 2.6 0.1 0.1 3 6 −2.0 5.2
30 Aulacoseira distans var. nivaloides 6.9 16.4 0.6 0.5 16 31 −1.1 18.9
31 Aulacoseira distans var. tenella 10.3 30.8 1.1 3.1 19 59 −1.5 32.0
32 Aulacoseira granulata 1.8 1.4 0.1 0.1 5 8 −0.6 10.1
33 Aulacoseira italica subsp. subarctica 16.4 13.4 0.4 0.6 4 31 −2.2 15.5
34 Aulacoseira italica subsp. subarctica f. tenussima 0.6 9.5 0.0 0.3 1 6 −2.0 4.7
35 Aulacoseira italica var. valida 2.3 0.4 0.1 0.0 4 7 0.6 5.4
36 Aulacoseira lirata 16.3 17.6 1.1 1.4 21 54 −1.2 34.0
37 Aulacoseira lirata var. lacustris 10.8 1.2 0.4 0.0 7 4 1.0 4.6
38 Aulacoseira nygaardii 7.1 9.5 0.6 0.2 18 14 0.4 19.4
39 Aulacoseira perglabra var. floriniae 3.4 3.0 0.2 0.1 11 14 −0.5 15.5
40 Caloneis ventricosa 0.2 1.9 0.0 0.1 3 14 −0.3 8.8
41 Cocconeis placentula 19.5 9.1 2.2 0.4 31 35 1.0 28.8
42 Cyclotella comta 9.0 24.4 0.5 3.8 17 66 −1.9 34.2
43 Cyclotella meneghiniana 1.2 26.7 0.1 0.6 4 11 0.9 4.8
44 Cyclotella michiganiana 5.2 45.4 0.5 1.1 11 40 −0.9 23.3
45 Cyclotella ocellata 20.6 17.4 0.4 0.7 2 11 −2.5 4.8
46 Cyclotella stelligera 27.5 58.8 3.0 18.2 33 84 −1.3 55.6
47 Cymbella amphicephala var. hercynica 1.7 0.4 0.1 0.0 13 10 0.7 13.9
48 Cymbella cesatii 0.7 1.4 0.1 0.0 10 10 1.6 11.5
49 Cymbella cf. aequalis 2.2 3.8 0.2 0.2 13 21 1.1 15.4
50 Cymbella cf. gaeumannii 1.2 1.4 0.1 0.1 8 15 −0.4 13.8
51 Cymbella cf. schubartii 0.4 1.2 0.0 0.0 6 12 0.2 10.7
52 Cymbella cistula 3.4 1.8 0.1 0.0 8 15 1.8 12.8
53 Cymbella delicatula 2.6 1.2 0.1 0.0 3 4 2.7 4.0
54 Cymbella descripta 1.2 1.0 0.0 0.0 3 9 1.2 6.9
55 Cymbella hebridica 5.0 2.0 0.2 0.1 14 27 0.9 18.6
56 Cymbella lunata 2.0 1.1 0.2 0.1 19 35 0.0 30.3
57 Cymbella microcephala 3.7 4.3 0.4 0.2 25 33 1.2 27.0
58 Cymbella minuta 2.0 2.2 0.3 0.2 31 42 0.7 43.1
59 Cymbella sp. 1 PIRLA 2.8 2.6 0.1 0.1 7 9 0.5 7.0
60 Diploneis marginestriata 4.4 0.6 0.1 0.1 6 21 −0.9 16.1
61 Diploneis ovalis 1.6 0.3 0.1 0.0 6 18 −0.5 11.0
62 Epithemia spp. 0.4 0.6 0.0 0.0 6 4 1.4 6.5
63 Eunotia bidentula 0.8 10.8 0.1 0.2 12 16 0.6 10.9
64 Eunotia carolina var. 1 PIRLA 4.2 6.4 0.2 0.1 11 16 0.4 11.5
65 Eunotia curvata 5.9 2.6 0.6 0.2 28 33 0.4 30.5
66 Eunotia exigua 10.2 3.2 0.4 0.2 17 29 0.4 22.0
67 Eunotia fallax 1.9 2.2 0.1 0.0 4 6 −0.1 3.7
68 Eunotia flexuosa 2.1 14.8 0.4 0.2 28 35 0.3 25.9
69 Eunotia hemicyclus 3.0 1.9 0.2 0.0 8 5 1.0 7.7
70 Eunotia implicata 1.6 0.2 0.1 0.0 6 7 0.3 5.6
71 Eunotia incisa 5.6 3.4 1.1 0.4 36 56 0.2 49.6
72 Eunotia intermedia 0.8 2.1 0.1 0.1 7 12 −0.2 8.9
73 Eunotia lunaris var. attenuata 6.0 1.8 0.5 0.1 24 18 0.7 25.6
74 Eunotia microcephala 0.6 0.4 0.0 0.0 6 1 0.8 3.7
75 Eunotia monodon 1.5 1.4 0.2 0.1 25 20 0.5 25.3
76 Eunotia naegelii 7.6 7.2 0.4 0.2 19 16 0.6 15.9
77 Eunotia pectinalis 1.6 1.9 0.1 0.1 15 24 0.1 20.9
78 Eunotia pectinalis var. minor 1.6 1.9 0.2 0.1 20 18 0.6 23.1
79 Eunotia pectinalis var. ventricosa 9.2 4.8 1.2 0.3 32 40 0.1 32.0
80 Eunotia praerupta 1.0 1.0 0.1 0.1 15 18 0.0 18.9
81 Eunotia rhomboidea 2.2 5.3 0.2 0.2 17 31 0.2 20.9
82 Eunotia serra 0.6 3.4 0.0 0.1 4 7 0.7 5.0
83 Eunotia sp. 2 PIRLA 1.0 0.6 0.1 0.0 6 1 0.9 3.7
84 Eunotia spp. 0.8 2.8 0.1 0.0 7 5 1.1 8.5
85 Eunotia vanheurckii 2.0 1.4 0.2 0.1 17 24 0.3 19.8
86 Eunotia zasuminensis 6.3 3.7 0.3 0.2 7 19 −1.4 13.8
87 Fragilaria brevistriata 21.9 5.1 1.8 0.5 35 45 1.5 31.7
88 Fragilaria brevistriata var. capitata 0.6 1.2 0.0 0.1 5 18 −0.6 13.7
89 Fragilaria capucina var. mesolepta 29.0 3.6 1.1 0.1 6 6 2.2 5.8
90 Fragilaria cf. oldenburgiana 1.7 0.8 0.1 0.1 9 23 0.0 17.3
91 Fragilaria constricta 0.7 1.6 0.1 0.1 12 16 0.9 15.8
92 Fragilaria construens 30.9 31.3 2.0 1.0 18 27 1.9 15.3
93 Fragilaria construens var. binodis 4.4 1.0 0.1 0.1 9 20 −0.5 17.5
94 Fragilaria construens var. venter 10.7 15.6 0.3 0.2 7 2 4.4 4.3
95 Fragilaria crotonensis 29.7 34.3 2.2 2.8 23 55 −0.1 30.1
96 Fragilaria hungarica var. tumida 1.7 11.6 0.1 0.2 7 9 0.7 10.8
97 Fragilaria pinnata 58.7 34.7 7.1 2.3 40 68 0.8 46.8
98 Fragilaria pinnata var. acuminata 13.3 6.8 0.7 0.3 24 39 0.5 26.4
99 Fragilaria pinnata var. intercedens 6.9 0.6 0.1 0.0 1 3 2.6 1.9
100 Fragilaria pinnata var. lancettula 8.1 1.8 0.3 0.1 9 11 1.3 8.7
101 Fragilaria sp. 2 PIRLA 28.1 1.1 0.7 0.0 6 7 3.4 3.2
102 Fragilaria vaucheriae 2.9 8.7 0.4 0.4 28 46 0.1 34.5
103 Fragilaria virescens 1.1 3.0 0.1 0.1 12 10 0.3 10.5
104 Fragilaria virescens var. exigua 5.9 11.4 0.7 0.4 26 42 −0.1 33.3
105 Frustulia cf. magaliesmontana 16.3 5.3 0.6 0.2 9 10 0.9 7.3
106 Frustulia rhomboides 4.4 1.7 0.3 0.2 21 30 0.1 23.7
107 Frustulia rhomboides var. saxonica 15.1 9.7 1.7 0.7 28 51 0.2 32.1
108 Gomphonema acuminatum 1.2 2.0 0.1 0.1 14 27 0.2 23.8
109 Gomphonema angustatum 4.4 4.7 0.6 0.3 36 50 0.5 47.2
110 Gomphonema gracile 4.2 0.8 0.3 0.1 19 22 0.9 19.6
111 Gomphonema spp. 2.0 0.7 0.1 0.0 5 9 0.1 7.3
112 Gyrosigma acuminatum 24.9 0.4 0.6 0.0 9 14 1.9 5.2
113 Meridion circulare var. constrictum 1.2 2.0 0.1 0.1 10 12 0.1 15.1
114 Navicula arvensis 2.1 3.0 0.1 0.1 10 20 −0.8 16.2
115 Navicula bacillum 8.0 1.5 0.2 0.0 8 4 2.0 6.1
116 Navicula bremensis 0.8 1.5 0.1 0.0 10 9 0.5 10.6
117 Navicula capitata 0.8 0.8 0.1 0.0 9 7 1.7 10.1
118 Navicula cf. heimansii 8.3 16.7 0.7 0.5 17 24 0.5 19.1
119 Navicula cryptocephala 14.0 4.2 0.7 0.1 13 19 1.6 14.7
120 Navicula disjuncta 0.5 1.7 0.1 0.1 14 21 0.4 20.9
121 Navicula globosa 3.4 1.5 0.1 0.0 6 3 3.7 5.9
122 Navicula gysingensis 2.1 0.8 0.1 0.0 5 12 −0.6 8.3
123 Navicula halophila 5.6 0.8 0.1 0.0 6 6 2.6 7.3
124 Navicula laevissima 1.4 0.8 0.0 0.0 3 7 0.4 7.5
125 Navicula mediocris 1.8 4.0 0.1 0.2 11 21 0.3 12.2
126 Navicula minima 3.6 2.2 0.5 0.4 26 46 −0.4 38.8
127 Navicula modica 10.9 5.7 0.8 0.3 25 28 1.5 24.8
128 Navicula mutica 1.0 0.4 0.0 0.0 8 3 0.6 4.9
129 Navicula pupula 2.4 3.6 0.6 0.5 34 61 0.4 54.1
130 Navicula pupula var. rectangularis 0.6 3.4 0.1 0.1 7 11 1.2 8.4
131 Navicula radiosa 2.6 4.2 0.2 0.1 17 19 1.8 19.4
132 Navicula radiosa var. parva 7.0 4.9 0.7 0.4 27 52 0.9 36.5
133 Navicula radiosa var. tenella 7.5 3.0 0.5 0.1 18 27 1.8 22.1
134 Navicula rhynchocephala 3.8 7.2 0.3 0.2 15 25 0.8 19.9
135 Navicula seminuloides 3.6 8.1 0.5 0.5 19 39 0.2 27.5
136 Navicula seminulum 3.0 3.7 0.4 0.2 25 34 0.6 30.8
137 Navicula sp. 2 PIRLA 0.2 0.2 0.0 0.0 2 2 4.4 2.0
138 Navicula sp. 25 PIRLA 1.1 0.9 0.0 0.0 2 8 −1.8 6.5
139 Navicula spp. 7.6 7.0 1.4 0.8 27 53 0.8 45.7
140 Navicula submolesta 3.6 1.0 0.2 0.1 11 20 0.2 16.9
141 Navicula subtilissima 6.0 6.2 0.5 0.3 15 20 0.7 15.7
142 Navicula tenuicephala 2.7 2.9 0.1 0.1 3 6 1.1 4.6
143 Navicula trivialis 2.2 1.2 0.1 0.0 4 3 1.5 5.1
144 Navicula vitiosa 6.0 11.4 0.7 0.8 22 51 −0.4 33.8
145 Navicula vulpina 0.2 5.2 0.0 0.1 1 6 1.8 4.0
146 Neidium affine 1.5 1.3 0.2 0.1 25 26 0.8 30.7
147 Neidium iridis 1.8 1.5 0.2 0.1 17 25 0.4 25.8
148 Neidium iridis var. amphigomphus 2.5 1.0 0.2 0.1 21 25 0.4 23.3
149 Nitzschia acicularis 2.2 2.3 0.1 0.0 8 8 1.1 10.3
150 Nitzschia amphibia 1.4 2.0 0.0 0.1 3 8 1.9 6.8
151 Nitzschia denticula 4.2 3.0 0.2 0.1 8 6 2.4 8.3
152 Nitzschia dissipata 5.0 2.5 0.2 0.1 16 38 0.4 23.4
153 Nitzschia fonticola 1.6 12.1 0.1 0.4 13 30 0.9 16.9
154 Nitzschia gracilis 6.2 4.4 1.0 0.5 31 60 0.2 45.8
155 Nitzschia palea 3.6 9.2 0.2 0.3 15 37 0.5 26.5
156 Nitzschia perminuta 0.7 1.2 0.1 0.0 6 10 −0.2 7.4
157 Nitzschia spp. 4.0 8.9 0.5 0.3 19 23 1.5 21.2
158 Pinnularia abaujensis 1.1 0.8 0.1 0.1 11 23 0.0 18.0
159 Pinnularia abaujensis var. 2 PIRLA 16.3 5.5 0.4 0.2 10 17 0.8 9.2
160 Pinnularia abaujensis var. rostrata 1.4 2.8 0.1 0.0 6 8 0.8 7.2
161 Pinnularia biceps 5.9 5.0 0.3 0.3 19 37 0.5 27.2
162 Pinnularia braunii 4.4 3.6 0.1 0.1 11 16 0.5 12.2
163 Pinnularia hilseana 0.2 1.2 0.0 0.0 2 7 −0.2 4.4
164 Pinnularia maior 0.2 1.5 0.0 0.0 3 6 0.5 3.3
165 Pinnularia mesolepta 0.6 4.2 0.0 0.1 7 11 1.3 11.2
166 Pinnularia microstauron 0.6 1.9 0.1 0.0 10 11 0.3 11.9
167 Pinnularia pogoii 3.0 1.3 0.2 0.0 9 5 0.6 6.3
168 Pinnularia sp. 11 PIRLA 4.1 1.9 0.1 0.0 3 6 1.6 3.8
169 Pinnularia subcapitata 2.3 2.3 0.1 0.1 12 15 0.9 12.6
170 Pinnularia viridis 1.3 0.8 0.1 0.1 17 21 0.4 26.3
171 Stauroneis anceps 0.4 0.9 0.0 0.1 11 20 0.5 16.7
172 Stauroneis anceps f. gracilis 0.6 3.1 0.1 0.1 19 34 −0.6 34.1
173 Stauroneis nobilis var. baconiana 0.6 4.6 0.0 0.1 7 7 −0.2 10.3
174 Stauroneis phoenicenteron 0.8 1.9 0.2 0.2 24 43 0.2 36.7
175 Stenopterobia intermedia 1.3 1.5 0.2 0.1 22 32 −0.2 32.6
176 Stephanodiscus hantzschii 14.7 54.4 0.4 1.2 5 5 0.2 4.2
177 Stephanodiscus niagarae 6.1 3.6 0.2 0.2 3 11 −1.2 8.9
178 Surirella delicatissima 3.5 2.5 0.3 0.1 16 25 0.3 18.1
179 Surirella linearis 13.9 0.5 0.4 0.1 14 23 1.0 11.8
180 Surirella sp. 2 PIRLA 0.6 8.3 0.0 0.1 3 4 −1.5 2.7
181 Synedra acus 1.3 1.3 0.1 0.0 4 8 0.2 6.9
182 Synedra acus var. angustissima 1.4 2.0 0.1 0.1 6 12 0.1 9.6
183 Synedra delicatissima 8.6 6.4 0.3 0.3 11 20 −0.6 12.0
184 Synedra famelica 1.8 30.2 0.2 0.5 17 33 −0.5 15.3
185 Synedra filiformis var. exilis 1.4 2.4 0.1 0.1 7 9 −1.5 7.8
186 Synedra parasitica 1.0 4.4 0.1 0.1 14 14 1.3 14.5
187 Synedra pulchella 6.8 5.0 0.2 0.1 7 11 1.4 8.0
188 Synedra rumpens 2.4 2.6 0.1 0.1 6 18 −0.3 15.6
189 Synedra rumpens var. familiaris 9.7 5.2 0.5 0.3 19 30 0.3 26.2
190 Synedra spp. 3.5 3.0 0.1 0.1 2 6 −0.1 6.3
191 Synedra subrhombica 1.6 2.6 0.1 0.1 7 12 0.0 9.6
192 Synedra ulna 2.4 5.1 0.3 0.2 27 43 0.1 37.8
193 Tabellaria fenestrata 2.6 2.1 0.2 0.1 16 28 −0.3 24.0
194 Tabellaria flocculosa strain III 11.0 5.1 0.8 0.6 26 66 −0.6 44.8
195 Tabellaria flocculosa strain IIIp 19.5 42.9 1.2 7.9 27 74 −1.8 39.6
196 Tabellaria flocculosa strain IV 2.9 4.3 0.7 0.4 29 50 −0.2 41.0
197 Tabellaria flocculosa var. linearis 6.4 1.5 0.5 0.2 29 48 −0.5 37.8
198 Tabellaria quadriseptata 29.8 17.0 1.7 0.3 12 15 1.1 10.8

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vermaire, J.C., Gregory-Eaves, I. Reconstructing changes in macrophyte cover in lakes across the northeastern United States based on sedimentary diatom assemblages. J Paleolimnol 39, 477–490 (2008). https://doi.org/10.1007/s10933-007-9125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-007-9125-y

Keywords

  • Macrophyte cover
  • Diatoms
  • Paleolimnology
  • Shallow lakes
  • Logistic regression
  • Transfer function