Journal of Paleolimnology

, Volume 38, Issue 4, pp 525–539 | Cite as

Response of littoral chironomid communities and organic matter to late glacial lake—level, vegetation and climate changes at Lago dell’Accesa (Tuscany, Italy)

  • Laurent MilletEmail author
  • Boris Vannière
  • Valérie Verneaux
  • Michel Magny
  • Jean Robert Disnar
  • Fatima Laggoun-Défarge
  • Anne Véronique Walter-Simonnet
  • Gilles Bossuet
  • Elena Ortu
  • Jacques-Louis de Beaulieu
Original Paper


This study focuses on the response of lacustrine littoral chironomid communities to late glacial changes in limnological, environmental and climate conditions in the Mediterranean context. Late glacial chironomid (Diptera: Chironomidae) assemblages, organic petrography and geochemistry were analysed in a sediment core from the littoral zone of Lago dell’Accesa (Tuscany, Italy), where the lake-level fluctuations and the vegetation history have been previously reconstructed. Comparison of the chironomid stratigraphy to other proxies (pollen assemblages, organic petrography and geochemistry, lake-level) and regional climate reconstruction suggested the predominant influence of lake-level changes on the littoral chironomid fauna. The main lowering events that occurred during the Oldest and the Younger Dryas were followed by higher proportions of taxa typical of littoral habitats. A complementary study of organic matter suggested the indirect impact of lake-level on the chironomids through changes in humic status and habitat characteristics, such as the type of substrate and aquatic macrophyte development. Several chironomid taxa, such as Glyptotendipes, Microtendipes and Cricotopus type patens, were identified as possible indicators of low lake-level in the late glacial records. Nevertheless, this study suggested that parallel analyses of organic matter and chironomid assemblages may be needed to circumvent misinterpretation of littoral chironomid assemblage stratigraphy. There was a weak response of the chironomid assemblages to small lake-level lowerings that corresponded to the Older Dryas and Preboreal oscillations. A higher level of determination, e.g. to the species group level, may be necessary to increase the sensibility of the indicators to lake-level changes.


Chironomids Organic matter Late glacial Paleolimnology Lake-level Italy 



Financial support for this study was provided by the French CNRS (Program ECLIPSE). The authors express their sincere thanks to Mouna el Mekki and Didier Kéravis for technical assistance and to James Dat for his help with the English language. Many thanks also to Gaute Velle and the anonymous reviewer for helpful comments.


  1. Armitage P, Cranston PS, Pinder LCV (1995) The Chironomidae. The biology and ecology of non-biting midges. Chapman & Hall, LondonGoogle Scholar
  2. Asioli A, Trincardi F, Lowe JJ, Ariztegui D, Langone L, Oldfield F (2001) Sub-millenial scale climatic oscillations in the central Adriatic during the Lateglacial: palaeoceanographic implications. Quat Sci Rev 20:1201–1221CrossRefGoogle Scholar
  3. Barley EM, Walker IR, Kurek J, Cwynar LC, Mathewes RW, Gajewski K, Finney BP (2006) A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. J Paleolimnol 36:295–314 CrossRefGoogle Scholar
  4. Bennett KD (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytol 132:155–170CrossRefGoogle Scholar
  5. Brinkhurst RO (1974) The benthos of lakes. Macmillan Press Ltd., LondonGoogle Scholar
  6. Brooks SJ, Birks HJB (2001) Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quat Sci Rev 20:1723–1741CrossRefGoogle Scholar
  7. Brooks SJ, Mayle FE, Lowe JJ (1997) Chironomid-based Late-glacial climatic reconstruction for southeast Scotland. J Quat Sci 12:161–167CrossRefGoogle Scholar
  8. Butler MG, Rezanka RL, Giovannielli KM (1999) Utility of species-level identification of Chironomus larvae in biological assessment of prairie lakes. Int Ver Theor Angew Limnol Verh 27:273–277Google Scholar
  9. Disnar JR, Guillet B, Keravis D, Di-Giovanni C, Sebag D (2003) Soil OM (SOM) characterisation by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34:327–343CrossRefGoogle Scholar
  10. Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geoth Res 91:221–246CrossRefGoogle Scholar
  11. Drescher-Schneider R, Beaulieu JL, Magny M, Walter-Simonnet AV, Bossuet G, Millet L, Bruggiapaglia E, Drescher A (2007) Vegetation history, climate and human impact over the last 15 000 years at Lago dell’Accesa (Tuscany, Central Italy). Veget Hist Archeobot. doi:10.1007/s00334-006-0089-zGoogle Scholar
  12. Espitalié J, Deroo G, Marquis F (1985a) La pyrolyse Rock Eval et ses applications. 2de partie. Rev Inst Fr Pet 40:755–784Google Scholar
  13. Espitalié J, Deroo G, Marquis F (1985b) La pyrolyse Rock Eval et ses applications. 3ème partie. Rev Inst Fr Pet 41:73–89Google Scholar
  14. Fittkau EJ, Roback SS (1983) The larvae of Tanypodinae (Diptera: Chironomidae) of the Holarctic region—Keys and diagnoses. Entomol Scan 19(Suppl):33–110Google Scholar
  15. Gandouin E, Maasri A, Van Viet-Lanoë B, Franquet E (2006) Chironomid (Insecta: Diptera) assemblages from a gradient of lotic and lentic waterbodies in river floodplains of France: a methodological tool for paleoecological applications. J Paleolimnol 35:149–166CrossRefGoogle Scholar
  16. Grimm EC (1991) TILIA and TILIA GRAPH Software. Illinois State MuseumGoogle Scholar
  17. Heinis FH, Crommentuijn T (1992) Behavioural responses to changing oxygen concentrations of deposit feeding chironomid larvae (Diptera) of littoral and profundal habitats. Arch Hydrobiol 124:173–185Google Scholar
  18. Heiri O, Millet L (2005) Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey (Jura, France). J Quat Sci 20:31–44CrossRefGoogle Scholar
  19. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432CrossRefGoogle Scholar
  20. Hirvenoja M (1973) Revision der gattung Cicotopus van der Wulp und ihrer Verwandten (Diptera, Chironomidae). Ann Zool Fenn 10:1–363Google Scholar
  21. Hofmann W (1971) Zur Taxonomie und Palökologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Arch Hydrobiol Beih 6:1–50Google Scholar
  22. Hofmann W (1986) Chironomid analysis. In: Berglund BE (ed) Handbook on holocene palaeoecology and palaeohydrology. Wiley, Chichester, pp 715–727Google Scholar
  23. Huntley B, Watts WA, Allen JRM, Zolitschka B (1999) Palaeoclimate, chronology and vegetation history of the Weichselian Lateglacial: comparative analysis of data from three cores at Lago Grande di Monticchio, southern Italy. Quat Sci Rev 18:945–960CrossRefGoogle Scholar
  24. Jacob J, Disnar JR, Boussafir M, Sifeddine A, Turcq B, Albuquerque ALS (2004) Major environmental changes recorded by lacustrine sedimentary organic matter since the Last Glacial Maximum under the tropics (Lagoa do Caço, NE Brazil). Palaeogeogr Palaeoclim Palaeoecol 205:183–197CrossRefGoogle Scholar
  25. Klink AG, Moller Pillot HKM (2003) Chironomidae larvae. Key to the higher taxa and species of the lowlands of Northwestern Europe. World Biodiversity Database CD-ROM series. Expert Center for Taxonomic Identification, University of Amsterdam, AmsterdamGoogle Scholar
  26. Korhola A, Olander H, Blom T (2000) Cladoceran and chironomid assemblages as quantitative indicators of water depth in subarctic Fennoscandian lake. J Paleolimnol 24:43–54CrossRefGoogle Scholar
  27. Lallier-Vergès E, Sifeddine A, Beaulieu JL, Reille M, Tribovillard N, Bertrand P, Mongenot T, Thouveny N, Disnar JR, Guillet B (1993) Sensibilité de la sédimentation organique aux variations climatiques du Tardi-Würm et de l’Holocène - le lac du Bouchet (Haute-Loire, France). Bull Soc Geol France 164:661–673Google Scholar
  28. Langford FF, Blanc-Valleron MM (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolisable hydrocarbons vs. total organic carbon. Am Assoc Petrol Geol Bull 74:799–804Google Scholar
  29. Magny M, Beaulieu JL, Drescher-Schneider R, Vannière B, Walter-Simonnet A-V, Millet L, Bossuet G, Peyron O (2006a) Climatic oscillations in central Italy during the Last Glacial–Holocene transition: the record from Lake Accesa. J Quat Sci 21(4):311–320CrossRefGoogle Scholar
  30. Magny M, Aalbersberg G, Bégeot C, Benoit-Ruffaldi P, Bossuet G, Disnar JR, Heiri O, Laggoun-Defarge F, Millet L, Peyron O, Vannière B, Walter-Simonnet AV (2006b) Environmental and climatic changes in the Jura mountains (eastern France) during the Last Glacial–Interglacial transition: a multi-proxy record from Lake Lautrey. Quat Sci Rev 25(5/6):414–445CrossRefGoogle Scholar
  31. Maitland PS (1979) The distribution of zoobenthos and sediments in Loch Leven, Kinross, Scotland. Arch Hydrobiol 85:98–125Google Scholar
  32. Manca M, Nocentini AM, Belis CA, Comoli P, Corbella L (1996) Invertebrate fossil remains as indicators of late Quaternary environmental changes in Latium crater lakes (L Albano and L Nemi). Mem Ist Ital Idrobiol 55:149–176Google Scholar
  33. Mastrantuono L (1991) Zoobenthos associated with submerged macrophytes in littoral areas of Lake Vico (Italy) some relations between fauna structure and water quality. Limnetica 7:153–162Google Scholar
  34. McGarrigle ML (1980) The distribution of chironomid communities and controlling sediment parameters. In: Murray DA (ed) Chironomidae. Ecology, systematics, cytology and physiology. Pergamon Press, Oxford, pp 275–282Google Scholar
  35. Merciai G (1933) Il Lago dell’Accesa presso Massa Maritima. Soc Toscanese Sci Nat 43:29–50Google Scholar
  36. Meyers P, Lallier-Vergès E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372CrossRefGoogle Scholar
  37. Millet L, Verneaux V, Magny M (2003) Lateglacial paleoenvironmental reconstruction using subfossil chironomid assemblages from Lake Lautrey (Jura, France). Arch Hydrobiol 156:405–429CrossRefGoogle Scholar
  38. Noël H, Garbolino E, Brauer A, Lallier-Vergès E, Beaulieu JL, Disnar JR (2001) Human impact and soil erosion during the last 5000 years as recorded on lacustrine sedimentary organic matter – Lac d’Annecy, the French Alps. J Paleolimnol 25:229–244CrossRefGoogle Scholar
  39. Palomäki R (1989) The chironomid larvae in the different depth zones of the littoral in some Finnish lakes. Acta Biol Debr Oecol Hung 3:257–266Google Scholar
  40. Pinder LCV, Reiss F (1983) The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic region-Key and diagnoses. Entomol Scand Suppl 19:293–435Google Scholar
  41. Ramrath A, Nowaczyk NR, Negendank JFW (1999) Sedimentological evidence for environmental changes since 34,000 years BP from Lago di Mezzano, central Italy. J Paleolimnol 21:423–435CrossRefGoogle Scholar
  42. Renssen H, Isarin RFB (2001) The two major warming phases of the last deglaciation at 14.7 and 11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Glob Planet Change 30:117–153CrossRefGoogle Scholar
  43. Saether OA (1979) Chironomid communities as water quality indicators. Holarct Ecol 2:65–74 Google Scholar
  44. Schmidt R, Van Den Bogaard C, Merkt J, Müller J (2002) A new Lateglacial chronostratigraphic tephra marker for the south-eastern Alps: The Neapolitan Yellow Tuff (NYT) in Längsee (Austria) in the context of a regional biostratigraphy and palaeoclimate. Quat Int 88:45–56CrossRefGoogle Scholar
  45. Sifeddine A, Betrand P, Lallier-Vergès E, Patience AJ (1996) Lacustrine organic fluxes and paleoclimatic variations during the last 15 ka: Lac du Bouchet (Massif Central, France). Quat Sci Rev 15:203–211CrossRefGoogle Scholar
  46. Stuiver M, Reimer PJ, Bard E, Beck W, Burr GS, Hughen KA, Kromer B, McCoarmac G, Van Der Plicht J, Spurk M (1998) INTCAL 98 Radiocarbon age calibration, 24 000-0 cal. BP. Radiocarbon 40:1041–1083Google Scholar
  47. Talbot MR, Livingstone DA (1989) Hydrogen index and carbon isotopes of lacustrine organic matter as lake-level indicators. Palaeoclim Palaeogeogr Palaeoecol 70:121–137CrossRefGoogle Scholar
  48. Thut RN (1968) A study of the profundal bottom fauna of lake Washington. Ecol Monogr 39:79–100CrossRefGoogle Scholar
  49. Velle G, Brooks SJ, Birks HJB, Willassen E (2005) Chironomids as a tool for inferring Holocene climate: an assessment based on six sites in southern Scandinavia. Quat Sci Rev 24:1429–1462CrossRefGoogle Scholar
  50. Verneaux V, Aleya L (1998) Bathymetric distributions of chironomid communities in ten French lakes: implications on lake classification. Arch Hydrobiol 142:209–228Google Scholar
  51. Walker IR (2001) Midges: Chironomidae and related Diptera. In: Last WM, Smol JP (eds) Tracking Environnemental change using lake sediments. Volume 4: Zoological Indicators. Kluwer Academic Publishers, Dordrecht, pp 43–66Google Scholar
  52. Walker IR, Smol JP, Engstrom DR, Birks HJB (1991) An assessment of Chironomidae as quantitative indicators of past climatic change. Can J Fish Aquat Sci 48:975–987Google Scholar
  53. Wiederholm T (1983) Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomol Scand Suppl 19:1–457Google Scholar
  54. Woodward CA, Shulmeister J (2006) New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophylle a). J Paleolimnol 36:407–429CrossRefGoogle Scholar
  55. Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Int 122:7–30CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Laurent Millet
    • 1
    • 2
    Email author
  • Boris Vannière
    • 1
  • Valérie Verneaux
    • 3
  • Michel Magny
    • 1
  • Jean Robert Disnar
    • 4
  • Fatima Laggoun-Défarge
    • 4
  • Anne Véronique Walter-Simonnet
    • 5
  • Gilles Bossuet
    • 1
  • Elena Ortu
    • 1
  • Jacques-Louis de Beaulieu
    • 6
  1. 1.Laboratoire de Chrono-Ecologie, UMR 6565 CNRS, UFR Sciences et TechniquesUniversité de Franche-ComtéBesançon cedexFrance
  2. 2.Laboratoire EDYTEM, UMR 5204, CISMUniversité de Savoie Le Bourget du Lac cedexFrance
  3. 3.Laboratoire de Biologie Environnementale, EA 3184 USC INRA, UFR Sciences et Techniques Université de Franche-ComtéBesançon cedexFrance
  4. 4.Institut des Sciences de la Terre d’Orléans, UMR 6113 CNRSUniversité d’OrléansOrléans Cedex 2France
  5. 5.Laboratoire de Géosciences, UFR Sciences et TechniquesUniversité de Franche-ComtéBesançon cedexFrance
  6. 6.Laboratoire IMEP, UMR 6116 Europôle Méditerranéen de l’ArboisAix-en-Provence cedex 4France

Personalised recommendations