Skip to main content
Log in

Multi-proxy Reconstruction of Trophic State, Hypolimnetic Anoxia and Phototrophic Sulphur Bacteria Abundance in a Dimictic Lake in Northern Germany over the past 80 Years

  • Original Paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

During monthly investigations from 1996 to 2000, a hypolimnetic layer of phototrophic sulphur bacteria (Chromatium spp.) were observed in Lake Dudinghausen, a small dimictic lake in northern Germany. This paleolimnological study was initiated to detect if the occurrence of sulphur bacteria was related to cultural eutrophication or reflected natural conditions. Therefore, diatoms, algal pigments, okenone, geochemical proxies, and 210Pb and 137Cs were used in four sediment cores to investigate historical changes in trophic development, hypolimnetic redox conditions, anoxia and phototrophic sulphur bacteria abundances. Fossil diatoms, pigments, the ratio of chlorophyll derivatives to total carotenoids and the ratio of chlorophyll a to its derivatives suggest two phases of eutrophication coupled with hypolimnetic anoxia over the last ~80 years: a first phase from about 1923–1932 and a second from 1952 to 1982. In the first phase the ratios of Fe–Mn as well as Fe–Ca increased, suggesting seasonal anoxia. However, hypolimnetic anoxia was only weak because low levels of okenone suggest no mass development of sulphur bacteria. In contrast, sulphur bacteria increased during the early stages of the second eutrophication phase, suggesting increased temporal and spatial hypolimnetic anoxia. Surprisingly, the ratios of Fe–Mn as well as Fe–Ca decreased during this time. Possibly Fe, Mn and Ca were equally reduced through the intense anoxia. In the final stage, sulphur bacteria decreased again. As these bacteria need both anoxic conditions and a certain amount of light, the increased nutrient load probably led to low Secchi depth and therefore insufficient light conditions. In more recent years, diatoms and pigments suggest a decrease in nutrient levels. A second mass development of sulphur bacteria occurred, probably due to improved light conditions and continued anoxia in the upper hypolimnion. We conclude that the recent development of phototrophic sulphur bacteria do not represent natural conditions in Lake Dudinghausen. Furthermore, the upper sediments contain a completely new diatom flora that never occurred in older sediments of Lake Dudinghausen. Therefore, nutrient levels may eventually reach natural conditions, however they may not represent biological background reference conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvisi F, Dinelli E (2002) Evolution of sediment composition of the coastal Lake San Puto (Latium, Italy) in the last two centuries. J Limnol 61:15–26

    Google Scholar 

  • Appleby PG, Oldfield F (1983) The assessment of 210Pb dates from sites with varying sediment accumulation rates. Hydrobiologia 103:29–35

    Article  CAS  Google Scholar 

  • Appleby PG, Richardson N, Nolan PJ (1992) Self-absorption corrections for well-type germanium detectors. Nucl Instrum Methods Phys Res B 71:228–233

    Article  Google Scholar 

  • Battarbee RW (1999) The importance of paleolimnology to lake restoration. Hydrobiologia 395:149–159

    Article  Google Scholar 

  • Bengston L, Persson T (1978) Sediment changes in a lake␣used for sewage reception. Pol Arch Hydrobiol 25:17–33

    Google Scholar 

  • Bennion H, Appleby PG (1999) An assessment of recent environmental change in Llangorse Lake using palaeolimnology. Aquat Conserv: Mar Freshwat Ecosyst 9:361–375

    Article  Google Scholar 

  • Brotas V, Plante-Cuny MR (1996) Identification and quantification of chlorophyll and carotenoid pigments in marine sediments. A protocol HPLC Analysis. Oceanol Acta 19:623–634

    CAS  Google Scholar 

  • Buffan-Dubau E, Carman KR (2000) Extraction of benthic microalgal pigments for HPLC analyses. Mar Ecol Prog Ser 204:293–297

    Article  CAS  Google Scholar 

  • Cuddington K, Leavitt PR (1999) An individual-based model of pigment flux in lakes: implications for organic biogeochemistry and paleoecology. Can J Fish Aquat Sci 56:1964–1977

    Article  CAS  Google Scholar 

  • Damsté JS, Koopmans MP (1997) The fate of carotenoids in sediments: an overview. Pure Appl Chem 69:2067–2074

    Google Scholar 

  • Dreßler M, Selig U, Dörfler W, Adler S, Schubert H, Hübener T (2006) Environmental changes and the Migration Period in northern Germany as reflected in␣the sediments of Lake Dudinghausen. Quat Res: accepted for publication, DOI: 10.1016/j.yqres.2006. 02.007

  • Engstrom DR, Swain EB, Kingston JC (1985) A paleolimnological record of human disturbance from Harveyȁ9s Lake, Vermont: geochemistry, pigments and diatoms. Freshw Biol 15:261–288

    Article  CAS  Google Scholar 

  • Feuillade M, Dominik J, Druart J-C, Loizeau J-L (1995) Trophic status evolution of Lake Nantura as revealed by biological records in sediment. Arch Hydrobiol 22:337–362

    Google Scholar 

  • Garbe-Schönberg CD, Wiethold J, Butenhoff D, Utech C, Stoffers P (1998) Geochemical and palynological record in annually laminated sediments from Lake Belau (Schleswig-Holstein) reflecting paleoecology and human impact over 9000 a. Meyniana 50:47–70

    Google Scholar 

  • Garrison PJ, Wakeman RS (2000) Use of paleolimnology to document the effect of lake shoreland development on water quality. J Paleolimnol 24:2369–2393

    Article  Google Scholar 

  • Gingele FX, Leipe T (1997) Distribution and Enrichment of Redox- Sensitive Metals in Baltic Sea Sediments. Baltica 11:5–16

    Google Scholar 

  • Guilizzoni P, Marchetto A, Lami A, Cameron NG, Appleby PG, Rose NL, Schnell A, Belis CA, Giorgis A, Guzzi L (1996) The environmental history of a mountain lake (Lago Paione Superiore, Central Alps, Italy) for the last c. 100 years: a multidisciplinary, palaeolimnological study. J Paleolimnol 15:245–264

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Dixit AS, Quinlan R, Smol JP (1999a) Limnological succession in reservoirs: a paleolimnological comparison of two methods of reservoir formation. Can J Fish Aquat Sci 56:1109–1121

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Quinlan R, Dixit AS, Smol JP (1999b) Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756

    Article  CAS  Google Scholar 

  • Harris JW, Stocker H (1998) Maximum Likelihood Method. In: Harris J, Stocker H, Harris JW (eds) Handbook of mathematics and computational science. Springer-Verlag, New York, pp 1–824

    Google Scholar 

  • Hendry GF, Houghton JD, Brown RS (1987) The degradation of chlorophyll—a biological enigma. New Phytol 107:255–302

    Article  CAS  Google Scholar 

  • Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432

    Article  Google Scholar 

  • Hodgson DA, Wright SW, Tyler PA, Davis N (1998) Analysis of fossil pigments from algae and bacteria in meromictic Lake Fidler, Tasmania, and its application to lake management. J Paleolimnol 19:1–22

    Article  Google Scholar 

  • Hurley JP, Armstrong DE (1990) Fluxes and transformations of aquatic pigments in Lake Mendota, Wisconsin. Limnol Oceanogr 35:384–398

    CAS  Google Scholar 

  • Itkonen A, Marttila V, Meriläinen JJ, Salonen P (1999) 8,000-year history of palaeoproductivity in a large boreal lake. J Paleolimnol 21:271–294

    Article  Google Scholar 

  • Juggins S (2003) C2 User Guide Version 1.3, Software for ecological and palaeoecological data analysis and visualisation: http://www.staff.ncl.ac.uk/stephen.juggins

  • Kalbe L, Werner H (1974) Das Sediment des Kummerower Sees. Untersuchungen des Chemismus und der Diatomeenflora. Int Rev Gesamte Hydrobiol 59:755–782

    Article  Google Scholar 

  • Kampf-Nielsen L (1974) Mud-water exchange of phosphate in undisturbed sediment cores and factors affecting exchange rates. Arch Hydrobiol 73:218–237

    Google Scholar 

  • Koinig KA, Shortyk W, Lotter AF, Ohlendorf C, Sturm M (2003) 9,000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake—the role of climate, vegetation, and land-use history. J Paleolimnol 30:307–320

    Article  Google Scholar 

  • Köster D, Racca J, Pienitz R (2004) Diatom-based inference models and reconstructions revisited: methods and transformations. J Paleolimnol 32:233–246

    Article  Google Scholar 

  • Krammer K (1997a) Die cymbelloiden Diatomeen, Eine Monographie der weltweit bekannten Taxa, Teil 1 Allgemeines und Encyonema Part. Bibliotheca Diatomologica Band 36. Cramer, Berlin Stuttgart, pp 1–382

    Google Scholar 

  • Krammer K (1997b) Die cymbelloiden Diatomeen, Eine Monographie der weltweit bekannten Taxa, Teil 2 Encyonema part., Encyonopsis and Cymbellopsis. Bibliotheca Diatomologica Band 37. Cramer, Berlin Stuttgart, pp 1–469

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae (Naviculaceae). In: Ettl H, Gerlof J, Heynig H, Mollenhauer D (eds) Süßwasserflora von mitteleuropa, Band 2.1. Gustav Fischer, Stuttgart, pp 1–876

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1988) Bacillariophyceae (Bacillariaceae, Epithemiaceae, Surirellaceae). In: Ettl H, Gerlof J, Heynig H, Mollenhauer D (eds) Süßwasserflora von mitteleuropa, Band 2.2. Gustav Fischer, Stuttgart, pp 1–596

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae (Centrales, Fragilariaceae, Eunotiaceae). In: Ettl H, Gerlof J, Heynig H, Mollenhauer D (eds) Süßwasserflora von mitteleuropa, Band 2.3. Gustav Fischer, Stuttgart, pp 1–576

    Google Scholar 

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae (Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis). In: Ettl H, Gerlof J, Heynig H, Mollenhauer D (eds) Süßwasserflora von mitteleuropa, Band 2.4. Gustav Fischer, Stuttgart, pp 1–437

    Google Scholar 

  • Lami A, Guillizoni P, Marchetto A (2000a) High resolution analysis of fossil pigments, carbon, nitrogen and sulphur in the sediment of eight European Alpine lakes: the MOLAR project. J Limnol 59:15–28

    Google Scholar 

  • Lami A, Marchetto A, Lo Bianco R, Appleby PG, Guillizoni P (2000b) The last ca 2,000 years palaeolimnology of Lake Candia (N. Italy): inorganic geochemistry, fossil pigments and temperature time-series analyses. J Limnol 59:31–46

    Google Scholar 

  • Lange-Bertalot H, Moser G (1994) Brachysira, Monographie der Gattung. Bibliotheca Diatomologica Band 29. Cramer, Berlin Stuttgart, pp 1–212

    Google Scholar 

  • Leavitt PR, Hodgson DA (2001) Sedimentary pigments. In: Smol JP, Birks HJB, Last WM (eds) Tracking environmental change using lake sediments. vol 3: terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 295–325

    Google Scholar 

  • Loizeauj J-L, Span D, Coppee V, Dominik J (2001) Evolution of the trophic state of Lake Annecy (eastern France) since the last glaciation as indicated by iron, manganese and phosphorus speciation. J Paleolimnol 25:205–214

    Article  Google Scholar 

  • Lotter AF, Hofmann W, Kamenik C, Lami A, Ohlendorf C, Sturm M, Van der Knaap WO, Van Leeuwen JFN (2000) Sedimentological and biostratigraphical analyses of short sediment cores from Hegelseewli (2,339 m a.s.l.) in the Swiss Alps. J Limnol 59:53–64

    Google Scholar 

  • Mathes J, Korczynski I, Müller J (2003) Shallow lakes in north-east Germany: trophic situation and restoration programmes. Hydrobiologia 506:797–802

    Article  Google Scholar 

  • Meyers PA, Takemura K, Horie S (1993) A reinterpretation of late Quaternary sediment chronology of Lake Biwa from correlation with marin glacial-interglacial cycles. Quat Res 39:154–162

    Article  Google Scholar 

  • Miettinen JO, Simola H, Grönlund E, Lahtinen J, Niimioja R (2005) Limnological effects of growth and cessation of agricultural land use in Ladoga Karelia: sedimentary pollen and diatom analyses. J Paleolimnol 34:229–243

    Article  Google Scholar 

  • Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes. J Ecol 29:208–239

    Google Scholar 

  • Olsson S, Regnell J, Pesson A, Sandgren S (1997) Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden. J Paleolimnol 17:275–294

    Article  Google Scholar 

  • Overmann J, Sandmann G, Hall KJ, Northcote TG (1993) Fossil carotenoids and paleolimnology of meromictic Mahoney Lake, British Columbia, Canada. Aquat Sci 55:31–39

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Reid M (2005) Diatom-based models for reconstructing past water quality and productivity in New Zealand lakes. J Paleolimnol 33:13–38

    Article  Google Scholar 

  • Reuss N (2005) Sediment pigments as biomarkers of environmental change. PhD Thesis. National Environmental Research Institute, Roskilde, Denmark, pp 1–33

  • Reynolds CS (1998) What factors influence the species compositions of phytoplankton in lakes of different trophic status. Hydrobiologia 369:11–26

    Article  Google Scholar 

  • Rippey B (1990) Sediment chemistry and atmospheric contamination. Philos Trans R Soc Lond Ser B 327:311–317

    Article  Google Scholar 

  • Rybak M (1988) The effect of agriculture on the primary production in Lake Beskie (Poland) as recorded in the␣stratigraphy of fossil pigments. Hydrobiologia 157:21–26

    Article  CAS  Google Scholar 

  • Ryves DB, Jones VJ, Guilizzoni P, Lami A, Marchetto A, Battarbee RW, Bettinetti R, Devoy EC (1996) Late Pleistocene and Holocene environmental changes at Lake Albano and Lake Nemi (central Italy) as indicated by algal remains. In: Guilizzoni P, Oldfield F (eds) Palaeoenvironmental analysis of italian crater lake and adriatic sediments. Mem Ist Ital Idrobiol 55:119–148

  • Sanger JE, Gorham E (1972) Stratigraphy of fossil pigments as a guide to the post-glacial history of Kirchner Marsh, Minnesota. Limnol Oceanogr 5:840–854

    Article  Google Scholar 

  • Schanz F, Fischer-Romero C, Bachofen R (1998) Photosynthetic production and photoadaptation of␣phototrophic sulfur bacteria in Lake Cadagno (Switzerland). Limnol Oceanogr 43:1262–1269

    Article  CAS  Google Scholar 

  • Scharf BW (1998) Eutrophication history of Lake Arendsee (Germany). Palaeogeogr Palaeoclimat Palaeoecol 140:85–96

    Article  Google Scholar 

  • Scheer H (1991) Chlorophylls. CRC Press, Boston

    Google Scholar 

  • Scheffler W, Nicklisch A, Schönfelder I (2005) Beiträge zur Morphologie, Ökologie und Ontogenie der planktischen Diatomee Cyclotella comensis Grunow. Untersuchungen an historischem und rezentem Material. Diatom Res 20:171–200

    Google Scholar 

  • Schönfelder I, Gelbrecht J, Schönfelder J, Steinberg CEW (2002) Relationship between littoral diatoms and their chemical environment in northeastern German lakes and rivers. J Phycol 38:66–82

    Article  Google Scholar 

  • Selig U, Schlungbaum G (2003) Characterisation and quantification of phosphorus release from profundal bottom sediments in two dimictic lakes during summer stratification. J Limnol 62:151–162

    Google Scholar 

  • Selig U, Hübener T, Heerkloss R, Schubert H (2004) Vertical gradients of nutrients in two dimictic lakes—influence of phototrophic sulphur bacteria on nutrient balance. Aquat Sci 66:247–256

    Article  CAS  Google Scholar 

  • Van Rompaey A, Krasa J, Dostal T, Govers G (2003) Modelling sediment supply to rivers and reservoirs in Eastern Europe during and after the collectivisation period. Hydrobiologia 494:169–176

    Article  Google Scholar 

  • Verardo DJ, Froelich PN, MacIntyre A (1990) Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 Analyser. Deep-Sea Res 37:157–165

    Article  CAS  Google Scholar 

  • Vila X, Abella CA (2001) Light harvesting adaptations of planktonic phototrophic micro-organisms to different light quality conditions. Hydrobiologia 452:15–30

    Article  Google Scholar 

  • Waters MN, Schelske CL, Kenney WF, Chapman AD (2005) The use of sedimentary algal pigments to infer historical algal communities in Lake Apopka, Florida. J Paleolimnol 33:53–71

    Article  Google Scholar 

  • Werner P, Smol JP (2005) Diatom-environmental relationship and nutrient transfer functions from contrasting shallow and deep limestone lakes in Ontario, Canada. Hydrobiologia 533:145–173

    Article  CAS  Google Scholar 

  • Wersin P, Höhener P, Giovanoli R, Stumm W (1991) Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem Geol 90:233–252

    Article  CAS  Google Scholar 

  • Wetzel RG (1970) Recent and post-glacial production rates of a marl lake. Limnol Oceanogr 15:491–503

    CAS  Google Scholar 

  • Wolin JA, Duthie HC (1999) Diatoms as indicators of water level change in freshwater lakes. In: Stoermer EF, Smol JP (eds) The diatoms, applications for the environmental and earth sciences. Cambridge University press, Cambridge, pp 183–202

    Google Scholar 

  • Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjornland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotinoids from marine phytoplankton. Mar Ecol Prog Ser 77:183–196

    Article  CAS  Google Scholar 

  • Yacobi YZ, Mantoura RFC, Llewellyn CA (1991) The distribution of chlorophylls and carotenoids and their breakdown products in Lake Kineret (Israel) sediments. Freshw Biol 26:1–10

    Article  CAS  Google Scholar 

  • Züllig H (1986) Carotenoids from plankton and photosynthetic bacteria in sediments as indicators of trophic changes in lake Lobsigen during the last 14,000 years. Hydrobiologia 143:315–319

    Article  Google Scholar 

Download references

Acknowledgements

We thank Heike Simon and Regine Paschen for the technical assistance in the lab, Helmut Erlenkeuser for the measurement of the radionuclides 210Pb and 137Cs and Fred Brezsinski for assistance in the field. Thomas Leipe facilitated the analyses of the metals. This research was supported by the Environmental Ministry of Mecklenburg-Vorpommern. An anonymous reviewer and Burkhard Scharf provided many constructive comments on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Dreßler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreßler, M., Hübener, T., Görs, S. et al. Multi-proxy Reconstruction of Trophic State, Hypolimnetic Anoxia and Phototrophic Sulphur Bacteria Abundance in a Dimictic Lake in Northern Germany over the past 80 Years. J Paleolimnol 37, 205–219 (2007). https://doi.org/10.1007/s10933-006-9013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10933-006-9013-x

Keywords

Navigation