Skip to main content
Log in

Molecular Cloning, Expression and Enzymatic Characterization of Tetrahymena thermophila Glutathione-S-Transferase Mu 34

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDS‒PAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Lundgren B, DePierre JW (1990) The metabolism of xenobiotics and its relationship to toxicity/genotoxicity: Studies with human lymphocytes. In: Acta Physiol Scand Suppl 592:49–59

    CAS  Google Scholar 

  2. Rostami-Hodjegan A, Tucker GT (2007) Simulation and prediction of in vivo drug metabolism in human populations from in vitro data. Nat Rev Drug Discov 6:140–148. https://doi.org/10.1038/nrd2173

    Article  CAS  PubMed  Google Scholar 

  3. Xu C, Li CY-T, Kong A-NT (2005) Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 28:249–268. https://doi.org/10.1007/BF02977789

    Article  CAS  PubMed  Google Scholar 

  4. Allocati N, Federici L, Masulli M, Di Ilio C (2009) Glutathione transferases in bacteria. FEBS J 276:58–75. https://doi.org/10.1111/j.1742-4658.2008.06743.x

    Article  CAS  PubMed  Google Scholar 

  5. Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14:3–8. https://doi.org/10.1111/j.1365-2583.2004.00529.x

    Article  CAS  PubMed  Google Scholar 

  6. Üstüntanır Dede AF, Arslanyolu M (2019) Genome-wide analysis of the Tetrahymena thermophila glutathione S-transferase gene superfamily. Genomics 111:534–548. https://doi.org/10.1016/j.ygeno.2018.11.034

    Article  CAS  PubMed  Google Scholar 

  7. Gullner G, Komives T, Király L, Schröder P (2018) Glutathione S-transferase enzymes in plant-pathogen interactions. Front Plant Sci 871:1–19. https://doi.org/10.3389/fpls.2018.01836

    Article  Google Scholar 

  8. Ogunmoyole T, Adewale IO, Fodeke AA, Afolayan A (2020) Catalytic studies of glutathione transferase from Clarias gariepinus (Burchell) in dilute and crowded solutions. Comp Biochem Physiol - C: Toxicol Pharmacol 228:108648. https://doi.org/10.1016/j.cbpc.2019.108648

    Article  CAS  PubMed  Google Scholar 

  9. Dasari S, Ganjayi MS, Meriga B (2017) Bird glutathione S-transferases: Endogenous and exogenous toxic insults. Adv Anim Vet Sci 5:388–394. https://doi.org/10.17582/journal.aavs/2017/5.9.388.394

    Article  Google Scholar 

  10. Landi S (2000) Mammalian class theta GST and differential susceptibility to carcinogens: A review. Mutat Res Rev Mutat Res 463:247–283. https://doi.org/10.1016/S1383-5742(00)00050-8

    Article  CAS  Google Scholar 

  11. Frova C (2006) Glutathione transferases in the genomics era: New insights and perspectives. Biomol Eng 23:149–169. https://doi.org/10.1016/j.bioeng.2006.05.020

    Article  CAS  PubMed  Google Scholar 

  12. Li J, Wang Y, Hu J et al (2023) Molecular identification and biochemical characteristics of a delta class glutathione S-transferase gene (FcδGST) from Chinese shrimp Fenneropenaeus chinensis. J Oceanol Limnol 41:1940–1953. https://doi.org/10.1007/s00343-022-2271-2

    Article  CAS  Google Scholar 

  13. Feng M, Hu Y, Yang L et al (2023) GST-Mu of Cristaria plicata is regulated by Nrf2/Keap1 pathway in detoxification microcystin and has antioxidant function. Aquat Toxicol Oct 263:106708.  https://doi.org/10.1016/j.aquatox.2023.106708

  14. Ding LL, Yu SJ, Lei S et al (2024) Identification and functional characterization of an omega-class glutathione s-transferase gene PcGSTO1 associated with cyetpyrafen resistance in panonychus citri (McGregor). J Agric Food Chem. https://doi.org/10.1021/acs.jafc.4c00732

    Article  PubMed  PubMed Central  Google Scholar 

  15. Weisse T, Sonntag B (2016) Ciliates in Planktonic Food Webs: Communication and Adaptive Response. In: Witzany G, Nowacki M (eds) Biocommunication of Ciliates. Springer, Cham. https://doi.org/10.1007/978-3-319-32211-7_19

    Chapter  Google Scholar 

  16. Overbaugh JM, Lau EP, Marino VA, Fall R (1988) Purification and preliminary characterization of a monomeric glutathione S-transferase from Tetrahymena thermophila. Arch Biochem Biophys 261:227–234. https://doi.org/10.1016/0003-9861(88)90336-0

    Article  CAS  PubMed  Google Scholar 

  17. Öziç C, Arslanyolu M (2012) Characterization of affinity tag features of recombinant Tetrahymena thermophila glutathione-S-transferase zeta for Tetrahymena protein expression vectors. Turk J Biol 36:513–526. https://doi.org/10.3906/biy-1110-2

    Article  CAS  Google Scholar 

  18. Kapkaç HA, Arslanyolu M (2021) Identification of glutathione-S-transferase m19 and m34 among responsive GST genes against 1-chloro-2,4-dinitrobenzene treatment of Tetrahymena thermophila. Eur J Protistol 81:125838. https://doi.org/10.1016/J.EJOP.2021.125838

    Article  PubMed  Google Scholar 

  19. Brunk CF, Sadler LA (1990) Characterizaton of the promoter region of Tetrahymena genes. Nucleic Acids Res 18:323–329. https://doi.org/10.1093/nar/18.2.323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yilmaz G, Arslanyolu M (2015) Efficient expression of codon-adapted affinity tagged super folder green fluorescent protein for synchronous protein localization and affinity purification studies in Tetrahymena thermophila. BMC Biotechnol 15:1–9. https://doi.org/10.1186/s12896-015-0137-9

    Article  CAS  Google Scholar 

  21. Gaertig J, Gorovsky MA (1992) Efficient mass transformation of Tetrahymena thermophila by electroporation of conjugants. Proc Natl Acad Sci U S A 89:9196–9200. https://doi.org/10.1073/pnas.89.19.9196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aslan E, Arslanyolu M (2015) Identification of neutral and acidic deoxyribonuclease activities in Tetrahymena thermophila life stages. Eur J Protistol 51:173–185. https://doi.org/10.1016/j.ejop.2015.02.004

    Article  PubMed  Google Scholar 

  23. Zhang X, Thompson GA (1997) An apparent association between glycosylphosphatidylinositol-anchored proteins and a sphingolipid in Tetrahymena mimbres. Biochem J 323:197–206. https://doi.org/10.1042/bj3230197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. https://doi.org/10.14026/j.cnki.0253-9705.2010.23.013

    Article  PubMed  Google Scholar 

  25. Marasović M, Marasović T, Miloš M (2017) Robust nonlinear regression in enzyme kinetic parameters estimation. Hindawi J Chem 2017:1–12. https://doi.org/10.1155/2017/6560983

    Article  CAS  Google Scholar 

  26. Brown AM (2001) A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput Methods Programs Biomed 65:191–200. https://doi.org/10.1016/S0169-2607(00)00124-3

    Article  CAS  PubMed  Google Scholar 

  27. Trute M, Gallis B, Doneanu C et al (2007) Characterization of hepatic glutathione S-transferases in coho salmon (Oncorhynchus kisutch). Aquat Toxicol 81:126–136. https://doi.org/10.1016/j.aquatox.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  28. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 30:162–173. https://doi.org/10.1002/elps.200900140

    Article  Google Scholar 

  29. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Salim HMW, Ring KL, Cavalcanti ARO (2008) Patterns of codon usage in two ciliates that reassign the genetic code: Tetrahymena thermophila and Paramecium tetraurelia. Protist 159:283–298. https://doi.org/10.1016/j.protis.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  31. Caramia S, Gatius AGM, dal Piaz F et al (2017) Dual role of imidazole as activator/inhibitor of sweet almond (Prunus dulcis) β-glucosidase. Biochem Biophys Rep 10:137–144. https://doi.org/10.1016/J.BBREP.2017.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao M, Gao Z, Ji X et al (2024) The diverse functions of Mu-class Glutathione S-transferase HrGSTm1 during the development of Hyalomma rufipes with a focus on the detoxification metabolism of cyhalothrin. Parasit Vectors 17(1):1–12. https://doi.org/10.1186/s13071-023-06084-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hernandez EP, Kusakisako K, Talactac MR et al (2018) Characterization and expression analysis of a newly identified glutathione S-transferase of the hard tick Haemaphysalis longicornis during blood-feeding. Parasit Vectors 11:1–16. https://doi.org/10.1186/s13071-018-2667-1

    Article  CAS  Google Scholar 

  34. Contreras-Vergara CA, Valenzuela-Soto E, García-Orozco KD et al (2007) A mu-class glutathione S-transferase from gills of the marine shrimp Litopenaeus vannamei: Purification and characterization. J Biochem Mol Toxicol 21:62–67. https://doi.org/10.1002/jbt.20162

    Article  CAS  PubMed  Google Scholar 

  35. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases : implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16. https://doi.org/10.1042/0264-6021:3600001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158. https://doi.org/10.1146/ANNUREV.ARPLANT.47.1.127

    Article  CAS  PubMed  Google Scholar 

  37. Rosa De Lima MF, Sanchez Ferreira CA, Joaquim De Freitas DR et al (2002) Cloning and partial characterization of a Boophilus microplus (Acari: Ixodidae) glutathione S-transferase. Insect Biochem Mol Biol 32:747–754. https://doi.org/10.1016/S0965-1748(01)00157-6

    Article  CAS  PubMed  Google Scholar 

  38. Hearne JL, Colman RF (2006) Contribution of the mu loop to the structure and function of rat glutathione transferase M1–1. Protein Sci 15:1277–1289. https://doi.org/10.1110/ps.062129506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rhee JS, Raisuddin S, Hwang DS et al (2008) A Mu-class glutathione S-transferase (GSTM) from the rock shell Thais clavigera. Comp Biochem Physiol - C Toxicol Pharmacol 148:195–203. https://doi.org/10.1016/j.cbpc.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  40. Adewale IO, Afolayan A (2005) Purification and catalytic properties of glutathione transferase from the hepatopancreas of crayfish Macrobrachium vollenhovenii (Herklots). J Biochem Mol Toxicol 18:332–344. https://doi.org/10.1002/jbt.20044

    Article  CAS  Google Scholar 

  41. Hubatsch I, Ridderström M, Mannervik B (1998) Human glutathione transferase A4–4: An Alpha class enzyme with high catalytic efficiency in the conjugation of 4-hydroxynonenal and other genotoxic products of lipid peroxidation. Biochem J 330:175–179. https://doi.org/10.1042/bj3300175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoarau P, Garello G, Gnassia-Barelli M et al (2002) Purification and partial characterization of seven glutathione S-transferase isoforms from the clam Ruditapes decussatus. Eur J Biochem 269:4359–4366. https://doi.org/10.1046/j.1432-1033.2002.03141.x

    Article  CAS  PubMed  Google Scholar 

  43. Yamamoto K, Usuda K, Kakuta Y et al (2012) Structural basis for catalytic activity of a silkworm Delta-class glutathione transferase. Biochim Biophys Acta Gen Subj 1820:1469–1474. https://doi.org/10.1016/j.bbagen.2012.04.022

    Article  CAS  Google Scholar 

  44. Yang HL, Zeng QY, Li EQ et al (2004) Molecular cloning, expression and characterization of glutathione S-transferase from Mytilus edulis. Comp Biochem Physiol - B Biochem Mol Biol 139:175–182. https://doi.org/10.1016/j.cbpc.2004.06.019

    Article  CAS  PubMed  Google Scholar 

  45. Bathige SDNK, Umasuthan N, SaranyaRevathy K et al (2014) A mu class glutathione S-transferase from Manila clam Ruditapes philippinarum (RpGSTμ): Cloning, mRNA expression, and conjugation assays. Comp Biochem Physiol - C: Toxicol Pharmacol 162:85–95. https://doi.org/10.1016/j.cbpc.2014.03.007

    Article  CAS  PubMed  Google Scholar 

  46. Na BK, Kang JM, Kim TS, Sohn WM (2007) Plasmodium vivax: Molecular cloning, expression and characterization of glutathione S-transferase. Exp Parasitol 116:414–418. https://doi.org/10.1016/j.exppara.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  47. Yang XQ, Zhang YL (2015) Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: Their responses to cantharidin. Enzyme Microb Technol 69:1–9. https://doi.org/10.1016/j.enzmictec.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  48. Lo WJ, Chiou YC, Hsu YT et al (2007) Enzymatic and nonenzymatic synthesis of glutathione conjugates: Application to the understanding of a parasite’s defense system and alternative to the discovery of potent glutathione S-transferase inhibitors. Bioconjug Chem 18:109–120. https://doi.org/10.1021/bc0601727

    Article  CAS  PubMed  Google Scholar 

  49. Mm A-A, Pj D (1990) In vitro interaction of mercury, copper (II) and cadmium with human glutathione transferase π. Res Commun Chem Pathol Pharmacol 69:99–102

    Google Scholar 

  50. Qin G, Jia M, Liu T et al (2013) Characterization and Functional Analysis of Four Glutathione S-Transferases from the Migratory Locust, Locusta migratoria. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0058410

    Article  CAS  Google Scholar 

  51. Dobritzsch D, Grancharov K, Hermsen C et al (2020) Inhibitory effect of metals on animal and plant glutathione transferases. J Trace Elem Med Biol 57:48–56. https://doi.org/10.1016/J.JTEMB.2019.09.007

    Article  CAS  PubMed  Google Scholar 

  52. Dierickx PJ (1982) In vitro inhibition of the soluble glutathione S-transferases from rat liver by heavy metals. Enzyme 27:25–32. https://doi.org/10.1159/000459018

    Article  CAS  PubMed  Google Scholar 

  53. Ullah H, Khan MF, Jan SU, Hashmat F (2015) Cadmium-glutathione complex formation in human t-cell and b-cell lymphocytes after their incubation with organo-cadmium diacetate. Pak J Pharm Sci 28:2075–2081

    CAS  PubMed  Google Scholar 

  54. Ploemen JHTM, van Ommen B, de Haan A et al (1993) In vitro and in vivo reversible and irreversible inhibition of rat glutathione S-transferase isoenzymes by caffeic acid and its 2-S-glutathionyl conjugate. Food Chem Toxicol 31:475–482. https://doi.org/10.1016/0278-6915(93)90106-9

    Article  CAS  PubMed  Google Scholar 

  55. Wongtrakul J, Sramala I, Prapanthadara LA, Ketterman AJ (2005) Intra-subunit residue interactions from the protein surface to the active site of glutathione S-transferase AdGSTD3-3 impact on structure and enzyme properties. Insect Biochem Mol Biol 35:197–205. https://doi.org/10.1016/j.ibmb.2004.11.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Anadolu University Scientific Research Projects Commission (AUBAP) with grant number 1001F45, which was given to Muhittin Arslanyolu. This project was awarded a European Cooperation in Science and Technology (COST) Grant under the Action BM1102 by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) and AUBAP.

Author information

Authors and Affiliations

Authors

Contributions

HAK carried out each experiment, examined the results, and prepared the manuscript. MA conceptualized and supervised the project and revised the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Muhittin Arslanyolu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 746 KB)

Supplementary file2 (PPTX 1028 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapkaç, H.A., Arslanyolu, M. Molecular Cloning, Expression and Enzymatic Characterization of Tetrahymena thermophila Glutathione-S-Transferase Mu 34. Protein J 43, 613–626 (2024). https://doi.org/10.1007/s10930-024-10204-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-024-10204-1

Keywords

Navigation