Skip to main content

Advertisement

Log in

Immunosuppressive Cyclotides: A Promising Approach for Treating Autoimmune Diseases

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role. A number of therapeutic mediators for autoimmune diseases are available, from conventional disease-modifying drugs to biologic agents and small molecule inhibitors. Recently, ribosomally synthesized peptides, specifically cyclotides from plants are currently attracting more attention as potential autoimmune disease therapeutics due to their decreased toxicity compared to small molecules inhibitors as well as their remarkable stability against a number of factors. This review provides a concise overview of various cyclotides exhibiting immunomodulatory properties and their potential as therapeutic interventions for autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357(9270):1777–1789

    Article  CAS  PubMed  Google Scholar 

  2. Pisetsky DS (2023) Pathogenesis of autoimmune disease. Nat Rev Nephrol 19(8):509–524

    Article  CAS  PubMed  Google Scholar 

  3. Kellie S, Al-Mansour Z Chapter Four - Overview of the immune system, in: M. Skwarczynski, I. Toth (Eds.), Micro and nanotechnology in vaccine development, William Andrew Publishing2017, pp. 63–81

  4. Davidson A, Diamond B (2001) Autoimmune Dis NEJM 345(5):340–350

    CAS  Google Scholar 

  5. Akari S, Matteo Maurizio G, Kazuhiko Y (2021) Functional genomics of autoimmune diseases. Ann Rheum Dis 80(6):689

    Article  Google Scholar 

  6. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3–23

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang L, Wang F-S, Gershwin ME (2015) Human autoimmune diseases: a comprehensive update. J Intern Med 278(4):369–395

    Article  CAS  PubMed  Google Scholar 

  8. Musette P, Bouaziz JD (2018) B cell modulation strategies in autoimmune diseases: new concepts. Front Immunol 9

  9. Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E, Wang CJ, Walker LSK (2018) T cell/B cell collaboration and autoimmunity: an intimate relationship. Front Immunol 9

  10. Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids — new mechanisms for old drugs. NEJM 353(16):1711–1723

    Article  CAS  PubMed  Google Scholar 

  11. Tabas I, Glass CK (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339(6116):166–172

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Monaco C, Nanchahal J, Taylor P, Feldmann M (2015) Anti-TNF therapy: past, present and future. Int Immunol 27(1):55–62

    Article  CAS  PubMed  Google Scholar 

  13. Zarrin AA, Bao K, Lupardus P, Vucic D (2021) Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug Discov 20(1):39–63

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M (2017) O’Shea, JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 16(12):843–862

    Article  CAS  PubMed  Google Scholar 

  15. Brown JWL, Coles AJ (2013) Alemtuzumab: evidence for its potential in relapsing—remitting multiple sclerosis. Drug Des Devel Ther 7null:131–138

    Article  Google Scholar 

  16. Scherer HU, Burmester GR, Riemekasten G (2006) Targeting activated T cells: successful use of anti-CD25 monoclonal antibody basiliximab in a patient with systemic sclerosis. Ann Rheum Dis 65(9):1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lunardon L, Payne AS (2012) Rituximab for autoimmune blistering diseases: recent studies, new insights. G Ital Dermatol Venereol 147(3):269–276

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yatoo MI, Gopalakrishnan A, Saxena A, Parray OR, Tufani NA, Chakraborty S, Tiwari R, Dhama K, Iqbal HMN (2018) Anti-inflammatory drugs and herbs with special emphasis on herbal medicines for countering inflammatory diseases and disorders - a review. Recent Pat Inflamm Allergy Drug Discov 12(1):39–58

    Article  CAS  PubMed  Google Scholar 

  19. Dar KB, Bhat AH, Amin S, Masood A, Zargar MA (2016) Ganie, inflammation: a multidimensional insight on natural anti-inflammatory therapeutic compounds. Curr Med Chem 23(33):3775–3800

    Article  CAS  PubMed  Google Scholar 

  20. de Veer SJ, Kan M-W, Craik DJ (2019) Cyclotides: from structure to function. Chem Rev 119(24):12375–12421

    Article  CAS  PubMed  Google Scholar 

  21. Gould A, Camarero JA (2017) Cyclotides: overview and biotechnological applications. Chem Biochem 18(14):1350–1363

    CAS  Google Scholar 

  22. Jacob B, Vogelaar A, Cadenas E, Camarero JA (2022) Using the cyclotide scaffold for targeting biomolecular interactions in drug development. Molecules 27(19)

  23. Wang KQ, Chiche CK, Craik L (2008) DJ CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering, Nucleic Acids Res D206-10

  24. Oguis GK, Gilding EK, Jackson MA, Craik DJ (2019) Butterfly pea (Clitoria ternatea), a cyclotide-bearing plant with applications in agriculture and medicine. Front Plant Sci 10:645

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gruber CW, Elliott AG, Ireland DC, Delprete PG, Dessein S, Göransson U, Trabi M, Wang CK, Kinghorn AB, Robbrecht E, Craik DJ (2008) Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20(9):2471–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yeshak MY, Burman R, Asres K, Göransson U (2011) Cyclotides from an extreme habitat: characterization of cyclic peptides from Viola Abyssinica of the Ethiopian highlands. J Nat Prod 74(4):727–731

    Article  CAS  PubMed  Google Scholar 

  27. de Veer SJ, Weidmann J, Craik DJ (2017) Cyclotides as tools in chemical biology. Acc Chem Res 50(7):1557–1565

    Article  PubMed  Google Scholar 

  28. Dang TT, Harvey PJ, Chan LY, Huang Y-H, Kaas Q, Craik DJ (2022) Mutagenesis of cyclotide Cter 27 exemplifies a robust folding strategy for bracelet cyclotides. Peptide Sci 114(6):e24284

    Article  CAS  Google Scholar 

  29. Craik DJ, Conibear AC (2011) The chemistry of cyclotides. J Org Chem 76(12):4805–4817

    Article  CAS  PubMed  Google Scholar 

  30. Hellinger R, Muratspahić E, Devi S, Koehbach J, Vasileva M, Harvey PJ, Craik DJ, Gründemann C, Gruber CW (2021) Importance of the cyclic cystine knot structural motif for immunosuppressive effects of cyclotides. ACS Chem Biol 16(11):2373–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Handley TNG, Wang CK, Harvey PJ, Lawrence N, Craik DJ (2020) Cyclotide structures revealed by NMR, with a little help from X-ray crystallography. ChemBioChem 21(24):3463–3475

    Article  CAS  PubMed  Google Scholar 

  32. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34(13):4147–4158

    Article  CAS  PubMed  Google Scholar 

  33. Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43(20):5965–5975

    Article  CAS  PubMed  Google Scholar 

  34. Senthilkumar B, Rajasekaran R (2017) Analysis of the structural stability among cyclotide members through cystine knot fold that underpins its potential use as a drug scaffold. Int J Pept Res Ther 23(1):1–11

    Article  CAS  Google Scholar 

  35. Poth AG, Chan LY, Craik DJ (2013) Cyclotides as grafting frameworks for protein engineering and drug design applications. Biopolymers 100(5):480–491

    Article  CAS  PubMed  Google Scholar 

  36. Huang YH, Du Q, Jiang Z, King GJ, Collins BM, Wang CK, Craik DJ (2021) Enabling efficient folding and high-resolution crystallographic analysis of bracelet cyclotides. Molecules 26(18)

  37. Poon S, Harris KS, Jackson MA, McCorkelle OC, Gilding EK, Durek T, van der Weerden NL, Craik DJ, Anderson MA (2018) Co-expression of a cyclizing asparaginyl endopeptidase enables efficient production of cyclic peptides in planta. J Exp Bot 69(3):633–641

    Article  CAS  PubMed  Google Scholar 

  38. Troeira Henriques S, Craik DJ (2017) Cyclotide structure and function: the role of membrane binding and permeation. Biochemistry 56(5):669–682

    Article  CAS  PubMed  Google Scholar 

  39. Felizmenio-Quimio ME, Daly NL, Craik DJ (2001) Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from. Momordica cochinchinensis J Biol Chem 276(25):22875–22882

    Article  CAS  PubMed  Google Scholar 

  40. Heitz A, Hernandez J-F, Gagnon J, Hong TT, Pham TTC, Nguyen TM, Le-Nguyen D, Chiche L (2001) Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry 40(27):7973–7983

    Article  CAS  PubMed  Google Scholar 

  41. Chiche L, Heitz A, Gelly J-C, Gracy J, Chau TTP, Ha TP, Hernandez J-F (2004) Le-Nguyen, Squash inhibitors: from structural motifs to macrocyclic knottins, Curr. Protein Pept Sci 5(5):341–349

    Article  CAS  Google Scholar 

  42. Gilding EK, Jackson MA, Poth AG, Henriques ST, Prentis PJ, Mahatmanto T, Craik DJ (2016) Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol 210(2):717–730

    Article  CAS  PubMed  Google Scholar 

  43. Dancewicz K, Slazak B, Kiełkiewicz M, Kapusta M, Bohdanowicz J, Gabryś B (2020) Behavioral and physiological effects of Viola spp. cyclotides on Myzus persicae (Sulz). J Insect Physiol 122:104025

    Article  CAS  PubMed  Google Scholar 

  44. Dang TT, Chan LY, Huang YH, Nguyen LTT, Kaas Q, Huynh T, Craik DJ (2020) Exploring the sequence diversity of cyclotides from Vietnamese Viola species. J Nat Prod 83(6):1817–1828

    Article  CAS  PubMed  Google Scholar 

  45. Gran L (1973) Oxytocic principles of Oldenlandia Affinis. Lloydia 36(2):174–178

    CAS  PubMed  Google Scholar 

  46. Gran L (1973) On the effect of a polypeptide isolated from Kalata-Kalata (Oldenlandia Affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol (Copenh) 33(5):400–408

    Article  CAS  PubMed  Google Scholar 

  47. Tam JP, Lu YA, Yang JL, Chiu KW (1999) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci U S A 96(16):8913–8918

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pränting M, Lööv C, Burman R, Göransson U, Andersson DI (2010) The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother 65(9):1964–1971

    Article  PubMed  Google Scholar 

  49. Witherup KM, Bogusky MJ, Anderson PS, Ramjit H, Ransom RW, Wood T, Sardana M (1994) Cyclopsychotride A, a biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J Nat Prod 57(12):1619–1625

    Article  CAS  PubMed  Google Scholar 

  50. Gustafson KR, Sowder RC, II LE, Henderson IC, Parsons Y, Kashman JH, Cardellina II, McMahon JB, Buckheit RW Jr., Pannell LK, Boyd MR (1994) Circulins A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia Parvifolia. J Am Chem Soc 116(20):9337–9338

  51. Daly NL, Koltay A, Gustafson KR, Boyd MR, Casas-Finet JR, Craik DJ (1999) Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity. J Mol Biol 285(1):333–345

    Article  CAS  PubMed  Google Scholar 

  52. Hallock YF, Sowder RC 2nd, Pannell LK, Hughes CB, Johnson DG, Gulakowski R, Cardellina JH 2nd, Boyd MR (2000) Cycloviolins A-D, anti-HIV macrocyclic peptides from Leonia cymosa. J Org Chem 65(1):124–128

  53. Schoepke T, Hasan Agha M, Kraft R, Otto A (1993) Compounds with hemolytic activity from Viola tricolor L. and Viola arvensis Murray. Sci Pharm 61:145–145

  54. Chen B, Colgrave ML, Wang C, Craik DJ (2006) Cycloviolacin H4, a hydrophobic cyclotide from Viola Hederaceae. J Nat Prod 69(1):23–28

    Article  CAS  PubMed  Google Scholar 

  55. Daly NL, Craik DJ (2009) Design and therapeutic applications of cyclotides. Future Med Chem 1(9):1613–1622

    Article  CAS  PubMed  Google Scholar 

  56. Craik DJ, Swedberg JE, Mylne JS, Cemazar M (2012) Cyclotides as a basis for drug design. Expert Opin Drug Discov 7(3):179–194

    Article  CAS  PubMed  Google Scholar 

  57. Gründemann C, Koehbach J, Huber R, Gruber CW (2012) Do plant cyclotides have potential as immunosuppressant peptides? J Nat Prod 75(2):167–174

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gründemann C, Thell K, Lengen K, Garcia-Käufer M, Huang Y-H, Huber R, Craik DJ, Schabbauer G, Gruber CW (2013) Cyclotides suppress human T-lymphocyte proliferation by an interleukin 2-dependent mechanism. PLoS ONE 8(6):e68016

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. Huang YH, Colgrave ML, Clark RJ, Kotze AC, Craik DJ (2010) Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity. J Biol Chem 285(14):10797–10805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Simonsen SM, Sando L, Rosengren KJ, Wang CK, Colgrave ML, Daly NL, Craik DJ (2008) Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J Biol Chem 283(15):9805–9813

    Article  CAS  PubMed  Google Scholar 

  61. Thell K, Hellinger R, Sahin E, Michenthaler P, Gold-Binder M, Haider T, Kuttke M, Liutkevičiūtė Z, Göransson U, Gründemann C, Schabbauer G, Gruber CW (2016) Oral activity of a nature-derived cyclic peptide for the treatment of multiple sclerosis. Proc Natl Acad Sci U S A 113(15):3960–3965

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gründemann C, Stenberg KG, Gruber CW (2019) T20K: an immunomodulatory cyclotide on its way to the clinic. Int J Pept Res Ther 25(1):9–13

    Article  Google Scholar 

  63. Jackson MA, Xie J, Nguyen LTT, Wang X, Yap K, Harvey PJ, Gilding EK, Craik DJ (2023) Plant-based production of an orally active cyclotide for the treatment of multiple sclerosis. Transgenic Res

  64. Wang CK, Gruber CW, Cemazar M, Siatskas C, Tagore P, Payne N, Sun G, Wang S, Bernard CC, Craik DJ (2014) Molecular grafting onto a stable framework yields novel cyclic peptides for the treatment of multiple sclerosis. ACS Chem Biol 9(1):156–163

    Article  CAS  PubMed  Google Scholar 

  65. Thongyoo P, Tate E, Leatherbarrow R (2006) Total synthesis of the macrocyclic cysteine knot microprotein MCoTI-II. Chem comm 27:2848–2850

    Article  Google Scholar 

  66. Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McNeil HP, Adachi R, Stevens RL (2007) Mast cell-restricted tryptases: structure and function in inflammation and pathogen defense *. J Biol Chem 282(29):20785–20789

    Article  CAS  PubMed  Google Scholar 

  68. Shin K, Nigrovic PA, Crish J, Boilard E, McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL, Lee DM (2009) Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 182(1):647–656

    Article  CAS  PubMed  Google Scholar 

  69. Thongyoo P, Bonomelli C, Leatherbarrow RJ, Tate EW (2009) Potent inhibitors of β-tryptase and human leukocyte elastase based on the MCoTI-II scaffold. J Med Chem 52(20):6197–6200

    Article  CAS  PubMed  Google Scholar 

  70. Sommerhoff CP, Avrutina O, Schmoldt H-U, Gabrijelcic-Geiger D, Diederichsen U, Kolmar H (2010) Engineered cystine knot miniproteins as potent inhibitors of human mast cell tryptase β. J Mol Biol 395(1):167–175

    Article  CAS  PubMed  Google Scholar 

  71. Mühlhahn P, Czisch M, Morenweiser R, Habermann B, Engh RA, Sommerhoff CP, Auerswald EA, Holak TA (1994) Structure of leech derived tryptase inhibitor (LDTI-C) in solution. FEBS Lett 355(3):290–296

    Article  PubMed  Google Scholar 

  72. Stubbs MT, Morenweiser R, Stürzebecher J, Bauer M, Bode W, Huber R, Piechottka GP, Matschiner G, Sommerhoff CP, Fritz H, Auerswald EA (1997) The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin: implications for the structure of human mast cell tryptase and its inhibition*. J Biol Chem 272(32):19931–19937

    Article  CAS  PubMed  Google Scholar 

  73. Sommerhoff CP, Söllner C, Mentele R, Piechottka GP, Auerswald EA, Fritz H (1994) A Kazal-type inhibitor of human mast cell tryptase: isolation from the medical leech Hirudo medicinalis, characterization, and sequence analysis. Biol Chem Hoppe-Seyler 375(10):685–694

    Article  CAS  PubMed  Google Scholar 

  74. Amenta R, Camarda L, Di Stefano V, Lentini F, Venza F (2000) Traditional medicine as a source of new therapeutic agents against psoriasis. Fitoterapia 71 Suppl 1 S13–20

  75. Hellinger R, Koehbach J, Fedchuk H, Sauer B, Huber R, Gruber CW, Gründemann C (2014) Immunosuppressive activity of an aqueous Viola tricolor herbal extract. J Ethnopharmacol 151(1):299–306

    Article  PubMed  Google Scholar 

  76. Retzl B, Zimmermann-Klemd AM, Winker M, Nicolay S, Gründemann C, Gruber CW (2023) Exploring immune modulatory effects of cyclotide-enriched Viola tricolor preparations. Planta Med 89(15):1493–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dayani L, Dinani MS, Aliomrani M, Hashempour H, Varshosaz J, Taheri A (2022) Immunomodulatory effects of cyclotides isolated from Viola odorata in an experimental autoimmune encephalomyelitis animal model of multiple sclerosis. Mult Scler Relat Disord 64:103958

    Article  CAS  PubMed  Google Scholar 

  78. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003) Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci 24(3):623–631

    Article  CAS  PubMed  Google Scholar 

  80. Oreja-Guevara C, Ramos-Cejudo J, Aroeira LS, Chamorro B, Diez-Tejedor E (2012) TH1/TH2 cytokine profile in relapsing-remitting multiple sclerosis patients treated with glatiramer acetate or Natalizumab. BMC Neurol 12(1):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jänicke C, Grünwald J, Brendler T (2003) Handbuch phytotherapie: indikationen-anwendungen-wirksamkeit-präparate. WVG, Wissenschaftliche Verlagsgesellschaft

    Google Scholar 

  82. Habib MS, Harkiss KJ (1970) Quantitative determination of emetine and cephaëline in ipecacuanha root and its preparations. Planta Med 18(03):270–274

    Article  CAS  PubMed  Google Scholar 

  83. Koehbach J, Attah AF, Berger A, Hellinger R, Kutchan TM, Carpenter EJ, Rolf M, Sonibare MA, Moody JO, Wong GK-S, Dessein S, Greger H, Gruber CW (2013) Cyclotide discovery in Gentianales revisited—identification and characterization of cyclic cystine-knot peptides and their phylogenetic distribution in Rubiaceae plants. Pep Sci 100(5):438–452

    Article  CAS  Google Scholar 

  84. Falanga CM, Steinborn C, Muratspahić E, Zimmermann-Klemd AM, Winker M, Krenn L, Huber R, Gruber CW, Gründemann C (2022) Ipecac root extracts and isolated circular peptides differentially suppress inflammatory immune response characterised by proliferation, activation and degranulation capacity of human lymphocytes in vitro. Biomed Pharmacother 152:113120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pinto MEF, Chan LY, Koehbach J, Devi S, Gründemann C, Gruber CW, Gomes M, Bolzani VS, Cilli EM, Craik DJ (2021) Cyclotides from Brazilian Palicourea sessilis and their effects on human lymphocytes. J Nat Prod 84(1):81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by Ho Chi Minh City University of Industry and Trade, under grant number 46/HĐ-DCT.

Author information

Authors and Affiliations

Authors

Contributions

N.T.H and T.N.T.H performed bibliography research, wrote the manuscript, and prepared the figures. Y.N.D.P. L.H.D. and S.H.P. gathered materials and revised the review manuscript. T.T.D provided scope, guidance and critically reviewed the manuscript.

Corresponding author

Correspondence to Tien T. Dang.

Ethics declarations

Competing Interests

No potential conflict of interest was reported by the authors. We declared no use of Generative AI and AI-assisted technologies in the writing process.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, N.T., Ho, T.N., Pham, Y.N. et al. Immunosuppressive Cyclotides: A Promising Approach for Treating Autoimmune Diseases. Protein J (2024). https://doi.org/10.1007/s10930-024-10188-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10188-y

Keywords

Navigation