Skip to main content

Advertisement

Log in

Effect of Organic Solvents on the Activity, Stability and Secondary Structure of asclepain cI, Using FTIR and Molecular Dynamics Simulations

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The present study aims at understanding the effect of organic solvents on the specific proteolytic activity and operational stability of asclepain cI in aqueous-organic media, using correlations between geometrical and structural parameters of asclepain cI. These correlations were determined by molecular dynamics (MD) simulations and the secondary structure of the enzyme validated by Fourier-transform Infrared (FTIR) spectroscopy. Asclepain cI exhibited significantly higher catalytic potential in 29 of the 42 aqueous-organic media tested, composed by 0.1 mM TRIS hydrochloride buffer pH 8 (TCB) and an organic solvent, than in buffer alone. Asclepain cI in water-organic miscible systems showed high FTIR spectral similarity with that obtained in TCB, while in immiscible systems the enzyme acquired different secondary structures than in buffer. Among the conditions studied, asclepain cI showed the highest catalytic potential in 50% v/v ethyl acetate in TCB. According to MD simulations, that medium elicited solvation and flexibility changes around the active center of asclepain cI and conducted to a new secondary structure with the active center preserved. These results provide valuable insights into the elucidation of the molecular mechanism of asclepain cI tolerance to organic solvents and pave the way for its future application for the synthesis of peptides in aqueous-organic media.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Obregón WD, Liggieri CS, Trejo SA, Avilés FX, Vairo-Cavalli SE, Priolo NS (2009) Characterization of papain-like isoenzymes from latex of Asclepias curassavica by molecular biology validated by proteomic approach. Biochimie. https://doi.org/10.1016/j.biochi.2009.07.017

    Article  PubMed  Google Scholar 

  2. Gurumallesh P, Alagu K, Ramakrishnan B, Muthusamy S (2019) A systematic reconsideration on proteases. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.01.081

    Article  PubMed  Google Scholar 

  3. Origone A, Barberis S, Illanes A, Guzmán F, Camí G, Liggieri C, Martínez R, Bernal C (2020) Improvement of enzymatic performance of Asclepias curassavica L. proteases by immobilization. Application to the synthesis of an antihypertensive peptide. Process Biochem. https://doi.org/10.1016/j.procbio

    Article  Google Scholar 

  4. Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online. https://doi.org/10.1186/s12575-016-0033-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Devi NA, Radhika GB, Bhargavi RJ (2017) Lipase catalyzed transesterification of ethyl butyrate synthesis in n-hexane—a kinetic study. Technol J Food Sci. https://doi.org/10.1007/s13197-017-2725-2

    Book  Google Scholar 

  6. Taher H, Al-Zuhair S (2017) The use of alternative solvents in enzymatic biodiesel production: a review. Biofuel Bioprod Bior. https://doi.org/10.1002/bbb.1727

    Article  Google Scholar 

  7. Guzmán F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Review article. J Biotechnol Electron. https://doi.org/10.2225/vol10-issue2-fulltext-13

    Book  Google Scholar 

  8. Grundtvig IPR, Heintz S, Krühne U, Gernaey KV, Adlercreutz P, Hayler JD, Wells AS, Woodley JM (2018) Screening of organic solvents for bioprocesses using aqueous-organic two-phase systems. Review. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2018.05.007

    Article  Google Scholar 

  9. Priyanka P, Tan Y, Kinsella GK, Henehan GT, Ryan BJ (2019) Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnol Lett. https://doi.org/10.1007/s10529-018-02633-7

    Article  PubMed  Google Scholar 

  10. Yang L, Dordick JS, Garde S (2004) Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J. https://doi.org/10.1529/biophysj.104.041269

    Article  PubMed  PubMed Central  Google Scholar 

  11. Quiroga E, Priolo N, Marchese J, Barberi S (2006) Behaviour of araujiain, a new cysteine phytoprotease, in organic media with low water content. Electron J Biotechnol. https://doi.org/10.2225/vol9-issue1-fulltext-6

    Article  Google Scholar 

  12. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz Jr KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem. https://doi.org/10.1002/jcc.20290

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baltacioglu H, Bayindirli A, Severcan M, Severcan F (2015) Effect of thermal treatment on secondary structure and conformational change of mushroom polyphenol oxidase (PPO) as food quality related enzyme: a FTIR study. Food Chem. https://doi.org/10.1016/j.foodchem.2015.04.097

    Article  PubMed  Google Scholar 

  14. Usoltsev D, Sitnikova VE, Kajava A, Uspenskaya M (2019) Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules. https://doi.org/10.3390/biom9080359

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu SW, Rao SS (2014) Advances in the management of constipation-predominant irritable bowel syndrome: the role of linaclotide. Therap Adv Gastroenterol. https://doi.org/10.1177/1756283X14537882

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today. https://doi.org/10.1016/j.drudis.2014.10.003

    Article  PubMed  Google Scholar 

  17. Zhang L, Hapon MB, Goyeneche AA, Srinivasan R, Gamarra-Luques CD, Callegari EA, Drappeau DD, Terpstra EJ, Pan B, Knapp JR, Chien J, Wang X, Eyster KM, Telleria CM (2016) Mifepristone increases mRNA translation rate, triggers the unfolded protein response, increases autophagic flux, and kills ovarian cancer cells in combination with proteasome or lysosome inhibitors. Mol Oncol. https://doi.org/10.1016/j.molonc.2016.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chinnadurai RK, Khan N, Meghwanshi GK, Ponne S, Althobiti M, Rajender Kumar R (2023) Review. Current research status of anti-cancer peptides: mechanism of action, production, and clinical applications. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2023.114996

    Book  Google Scholar 

  19. López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM (2022) Antioxidant and antimicrobial peptides derived from food proteins. Molecules. https://doi.org/10.3390/molecules27041343

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mahlapuu M, Björn C, Jonas Ekblom J (2020) Review Articles. Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2020.1796576

    Article  PubMed  Google Scholar 

  21. Reyes Jara AM, Liggieri CS, Bruno MA (2018) Preparation of soy protein hydrolysates with antioxidant activity by using peptidases from latex of Maclura pomifera fruits. Food Chem. https://doi.org/10.1016/j.foodchem.2018.05.013

    Article  PubMed  Google Scholar 

  22. Liggieri C, Obregón W, Trejo S, Priolo N (2009) Biochemical analysis of a papain-like protease isolated from the latex of Asclepias curassavica L. Acta Biochim Biophy Sin. https://doi.org/10.1093/abbs/gmn018

    Article  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  PubMed  Google Scholar 

  24. Abraham MH, Grellier PL, Abboud JLM, Doherty RH, Taft RW (1988) Solvent effects in organic chemistry-recent developments. Can J Chem. https://doi.org/10.1139/v88-420

    Article  Google Scholar 

  25. Abraham MH, Lieb WR, Franks NP (1991) Role of hydrogen bonding in general anesthesia. J Pharm Sci. https://doi.org/10.1002/jps.2600800802

    Article  PubMed  Google Scholar 

  26. Abraham MH, McGowan JC (1987) The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia. https://doi.org/10.1007/BF02311772

    Article  Google Scholar 

  27. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev. https://doi.org/10.1021/cr00032a005

    Article  Google Scholar 

  28. Abboud J-LM, Notari R (1999) Critical compilation of scales of solvent parameters. Part I. Pure, non-hydrogen bond donor solvents. Pure Appl Chem. https://doi.org/10.1351/pac199971040645

    Article  Google Scholar 

  29. Barberis S, Quiroga E, Morcelle S, Priolo N, Luco JM (2006) Study of phytoproteases stability in aqueous-organic biphasic systems using linear free energy relationships. J Mol Catal B. https://doi.org/10.1016/jmolcatb.2005.11.011

    Article  Google Scholar 

  30. Urrutia P, Bernal C, Wilson L, Illanes A (2018) Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.04.112

    Article  PubMed  Google Scholar 

  31. Meyer JD, Manning MC, Carpenter JF (2004) Effects of potassium bromide disk formation on the infrared spectra of dried model proteins. J Pharm Sci. https://doi.org/10.1002/jps.10562

    Article  PubMed  Google Scholar 

  32. Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins. https://doi.org/10.1002/prot.340230412

    Article  PubMed  Google Scholar 

  33. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. https://doi.org/10.1002/bip.360221211

    Article  PubMed  Google Scholar 

  34. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. https://doi.org/10.1038/nprot.2015.053

    Article  PubMed  PubMed Central  Google Scholar 

  35. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comp Chem. https://doi.org/10.1002/jcc.21224

    Article  Google Scholar 

  36. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. https://doi.org/10.1002/prot.21123

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andrews J, Blaisten-Barojas E (2019) Exploring with molecular dynamics the structural fate of PLGA oligomers in various solvents. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.9b06681

    Article  PubMed  Google Scholar 

  38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys. https://doi.org/10.1021/acs.jpcb.9b06681

    Article  Google Scholar 

  39. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys. https://doi.org/10.1063/1.470117

    Article  Google Scholar 

  40. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. https://doi.org/10.1021/ct700200b

    Article  PubMed  Google Scholar 

  41. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys doi 10(1063/1):2408420

    Google Scholar 

  42. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. https://doi.org/10.1063/1.328693

    Article  Google Scholar 

  43. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  44. Martínez L, Andreani R, Martínez JM (2007) Convergent algorithms for protein structural alignment. BMC Bioinform. https://doi.org/10.1186/1471-2105-8-306

    Article  Google Scholar 

  45. Andreani R, Martínez JM, Martínez L, Yano F (2008) Continuous optimization methods for structural alignment. Math Program. https://doi.org/10.1007/s10107-006-0091-3

    Article  Google Scholar 

  46. Martínez L (2015) Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0119264

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2007.06.004

    Article  PubMed  Google Scholar 

  48. Murayama K, Tomida M (2004) Heat-induced secondary structure and conformation change of bovine serum albumin investigated by Fourier transform infrared spectroscopy. Biochemistry. https://doi.org/10.1021/bi0489154

    Article  PubMed  Google Scholar 

  49. Marcelino AMC, Gierasch LM (2008) Roles of β-turns in protein folding: from peptide models to protein engineering. Biopolymers. https://doi.org/10.1002/bip.20960

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lobanov MIu, Bogatyreva NS, Galzitskaia OV (2008) Radius of gyration is indicator of compactness of protein structure. Mol Biol (Mosk) 42(4):701–706 (in Russian)

    Article  PubMed  Google Scholar 

  51. Prestrelski SJ, Tedeschi N, Arakawa T, Carpenter JF (1993) Dehydration induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J. https://doi.org/10.1016/S0006-3495(93)81120-2

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kendrick BS, Dong A, Allison SD, Manning MC, Carpenter JF (1996) Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states. J Pharm Sci. https://doi.org/10.1021/js950332f

    Article  PubMed  Google Scholar 

  53. Shivu B, Seshadri S, Li J, Oberg KA, Uversky VN, Fink AL (2013) Distinct β-sheet structure in protein aggregates determined by ATR-FTIR spectroscopy. Biochemistry. https://doi.org/10.1021/bi400625v

    Article  PubMed  Google Scholar 

  54. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature. https://doi.org/10.1038/s41586-021-03819-2

    Article  PubMed  PubMed Central  Google Scholar 

  55. Varadi M, Anyango S, Deshpande M et al (2022) AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab1061

    Article  PubMed  Google Scholar 

  56. Schrödinger LLC (2015) The PyMOL molecular graphics system, version 1.8

    Google Scholar 

  57. Abusham RAK, Masomian M, Salleh AB, Leow ATC, Rahman RNZRA (2019) An in-silico approach to understanding the structure-function: a molecular dynamics simulation study of rand serine protease properties form Bacillus subtilis in aqueous solvents. Adv Biotechnol Microbiol. https://doi.org/10.19080/AIBM.2019.12.555828

  58. Gu Z, Lai JL, Hang J, Zhang C, Wang S, Jiao Y, Liu S, Fang Y (2019) Theoretical and experimental studies on the conformational changes of organic solvent-stable protease from Bacillus sphaericus DS11 in methanol/water mixtures. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.01.196

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sandra Signorella at IQUIR-CONICET-Rosario by the FTIR facilities and Dr. Estela Blaisten-Barojas that kindly provided the ethyl ester of acetic acid force field parameters. Anabella Lucía Origone is postdoctoral scholar at the National Council of Scientific and Technique Research (CONICET), Argentina. Esteban Vega Hissi and Sonia Barberis are scientific researchers at CCT-San Luis-CONICET, San Luis, Argentina.

Funding

This work was supported by the National University of San Luis, San Luis, Argentina (Grant Number 2-0718, 2018-2022).

Author information

Authors and Affiliations

Authors

Contributions

SB designed the experiments, did the data analysis together with AO, and wrote the manuscript. AO did the experimental trials, data collection and analysis. EVH performed molecular dynamics simulations. GC did the FTIR spectra. CL prepared the purified enzyme extracts. AI collaborated with SB in reviewing the final version of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Esteban G. Vega Hissi or Sonia E. Barberis.

Ethics declarations

Conflict of interest

The authors declare they have no financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Origone, A.L., Hissi, E.G.V., Liggieri, C.S. et al. Effect of Organic Solvents on the Activity, Stability and Secondary Structure of asclepain cI, Using FTIR and Molecular Dynamics Simulations. Protein J (2024). https://doi.org/10.1007/s10930-024-10182-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10930-024-10182-4

Keywords

Navigation