Skip to main content
Log in

Selection and Molecular Response of AHL-lactonase (aiiA) Producing Bacillus sp. Under Penicillin G-induced Conditions

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Quorum sensing (QS) is the process by which microorganisms employ chemicals called autoinducers (AIs) to communicate with their population. The QS mechanism generally controls the expression of the virulence related genes in bacteria. N-acyl homoserine lactones (AHLs) are the most widespread QS molecules. Due to their diverse AHL-lactonase activities, Bacillus species make particularly suitable candidates for procedures such as demolition of pathogenic bacterial QS signals and bioremediation of β-lactam antibiotics from contaminated environments. In this study, seven Bacillus strains with Quorum quenching (QQ) activity were isolated using an enrichment medium supplemented with Penicillin G (PenG). The AHL-lactonase encoding gene (aiiA) was amplified by PCR and sequenced. Amino acid sequences underwent multiple sequence alignment. Docking studies were carried out with both C6HSL and PenG ligand using AutoDock tools. The aiiA amino acid sequences of the isolates were found to be well conserved. Furthermore, amino acid sequence alignment revealed that 74.9% of amino acid sequences were conserved in the genus Bacillus. Docking of the C6HSL to wild type (3DHA) and H97D variant reduced the docking score by only 0.1 kcal/mol for the mutated protein. When PenG docked with a higher (1.5 kcal/mol) score as a ligand to wild-type and mutant receptors, the docking score for the mutated protein likewise decreased by 0.1 kcal/mol. This research contributed to the diversification of organisms with QQ activity and beta-lactam antibiotic resistance. It also clarified the binding score of the PenG ligand to the Bacillus AHL lactonase molecule for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets created and/or analyzed for this report are accessible from the corresponding author on reasonable request.

References

  1. Dadgostar P (2019) Antimicrobial Resistance: implications and costs. Infect drug Resist 12:3903–3910. https://doi.org/10.2147/IDR.S234610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Noor AO, Almasri DM, Basyony AF, Albohy A, Almutairi LS, Alhammadi SS, Alkhamisi MA, Alsharif SA, Elfaky MA (2022) Biodiversity of N-acyl homoserine lactonase (aiiA) gene from Bacillus subtilis. Microbial Pathogenesis, 166. https://doi.org/10.1016/j.micpath.2022.105543

  3. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: Its role in virulence and possibilities for its control. In Cold Spring Harbor Perspectives in Medicine (Vol. 2, Issue 11). Cold Spring Harbor Laboratory Press. https://doi.org/10.1101/cshperspect.a012427

  4. Hense BA, Schuster M (2015) Core principles of bacterial autoinducer systems. Microbiol Mol biology reviews: MMBR 79(1):153–169. https://doi.org/10.1128/MMBR.00024-14

    Article  CAS  PubMed Central  Google Scholar 

  5. Acet Ö, Erdönmez D, Acet B, Odabaşı M (2021) N-acyl homoserine lactone molecules assisted quorum sensing: effects consequences and monitoring of bacteria talking in real life. Archives of Microbiology, vol 203. Springer Science and Business Media Deutschland GmbH, pp 3739–3749. https://doi.org/10.1007/s00203-021-02381-9

  6. Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2015) Quorum quenching: role in nature and applied developments. FEMS Microbiology Reviews, vol 40. Oxford University Press, pp 86–116. 1 https://doi.org/10.1093/femsre/fuv038

  7. Natrah FM, Ruwandeepika HA, Pawar S, Karunasagar I, Sorgeloos P, Bossier P, Defoirdt T (2011) Regulation of virulence factors by quorum sensing in Vibrio harveyi. Vet Microbiol 154(1–2):124–129. https://doi.org/10.1016/j.vetmic.2011.06.024

    Article  CAS  PubMed  Google Scholar 

  8. Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. www.pnas.orgcgidoi10.1073pnas.060023897

  9. Rehman ZU, Leiknes T (2018) Quorum-quenching Bacteria isolated from Red Sea Sediments reduce biofilm formation by Pseudomonas aeruginosa. Front Microbiol 9:1354. https://doi.org/10.3389/fmicb.2018.01354

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rémy B, Plener L, Decloquement P, Armstrong N, Elias M, Daudé D, Chabrière É (2020) Lactonase specificity is key to Quorum quenching in Pseudomonas aeruginosa. Front Microbiol 11:762. https://doi.org/10.3389/fmicb.2020.00762

    Article  PubMed  PubMed Central  Google Scholar 

  11. Novita H, Rusmana I, Yuhana M, Pasaribu FH (2015) Potential of Bacillus sp., as a producer of AHL lactonase and its application as a probiotic for the prevention of mas in catfish (Clarias gariepinus). J Fish Aquat Sci 10(6):464–476. https://doi.org/10.3923/jfas.2015.464.476

    Article  CAS  Google Scholar 

  12. Yin XT, Xu L, Fan SS, Xu LN, Li DC, Liu ZY (2010) Isolation and characterization of an AHL lactonase gene from Bacillus amyloliquefaciens. World J Microbiol Biotechnol 26(8):1361–1367

    Article  CAS  Google Scholar 

  13. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21(10):1001–1011

    Article  CAS  PubMed  Google Scholar 

  14. Sakr MM, Aboshanab KM, Aboulwafa MM, Hassouna NA (2013) Characterization and complete sequence of lactonase enzyme from Bacillus weihenstephanensis isolate P65 with potential activity against acyl homoserine lactone signal molecules. BioMed research international, 2013, 192589. https://doi.org/10.1155/2013/192589

  15. Yahya G, Ebada A, Khalaf EM, Mansour B, Nouh NA, Mosbah RA, El-Baz AM (2021) Soil-associated Bacillus species: a reservoir of bioactive compounds with potential therapeutic activity against human pathogens. Microorganisms 9(6):1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bush K, Bradford PA (2016) β-Lactams and β-Lactamase inhibitors: an overview. Cold Spring Harbor perspectives in medicine 6(8):a025247. https://doi.org/10.1101/cshperspect.a025247

    Article  PubMed  PubMed Central  Google Scholar 

  17. Catherwood AC, Lloyd AJ, Tod JA, Chauhan S, Slade SE, Walkowiak GP, Galley NF, Punekar AS, Smart K, Rea D, Evans ND, Chappell MJ, Roper DI, Dowson CG (2020) Substrate and Stereochemical Control of Peptidoglycan Cross-Linking by Transpeptidation by Escherichia coli PBP1B. J Am Chem Soc 142(11):5034–5048. https://doi.org/10.1021/jacs.9b08822

    Article  CAS  PubMed  Google Scholar 

  18. Pottegard A, Broe A, Aabenhus R, Bjerrum L, Hallas J, Damkier P (2015) Use of antibiotics in children: a danish nationwide drug utilization study. Pediatr Infect Dis J 34:e16–e22

    Article  PubMed  Google Scholar 

  19. Kusada H, Zhang Y, Tamaki H, Kimura N, Kamagata Y (2019) Novel N-acyl homoserine lactone-degrading bacteria isolated from penicillin-contaminated environments and their quorum-quenching activities. Front Microbiol 10:455

    Article  PubMed  PubMed Central  Google Scholar 

  20. Palzkill T (2013) Metallo-β-lactamase structure and function. Ann N Y Acad Sci 1277:91–104. https://doi.org/10.1111/j.1749-6632.2012.06796.x

    Article  CAS  PubMed  Google Scholar 

  21. Liu D, Lepore BW, Petsko GA, Thomas PW, Stone EM, Fast W, Ringe D (2005) Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proceedings of the National Academy of Sciences, 102(33), 11882–11887

  22. Geske GD, O’Neill JC, Blackwell HE (2007) N-phenylacetanoyl-L-homoserine lactones can strongly antagonize or superagonize quorum sensing in Vibrio fischeri. ACS Chem Biol 2(5):315–319. https://doi.org/10.1021/cb700036x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Momb J, Wang C, Liu D, Thomas PW, Petsko GA, Guo H, Ringe D, Fast W (2008) Mechanism of the quorum-quenching lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate modeling and active site mutations. Biochemistry 47(29):7715–7725. https://doi.org/10.1021/bi8003704

    Article  CAS  PubMed  Google Scholar 

  24. Christiaen SE, Brackman G, Nelis HJ, Coenye T (2011) Isolation and identification of quorum quenching bacteria from environmental samples. J Microbiol Methods 87(2):213–219

    Article  CAS  PubMed  Google Scholar 

  25. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12):3703–3711

    Article  CAS  PubMed  Google Scholar 

  26. Anandan K, Vittal RR (2019) Quorum quenching activity of AiiA lactonase KMMI17 from endophytic Bacillus thuringiensis KMCL07 on AHL- mediated pathogenic phenotype in Pseudomonas aeruginosa. Microb Pathog 132:230–242. https://doi.org/10.1016/j.micpath.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  27. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Torabi Delshad S, Soltanian S, Sharifiyazdi H, Haghkhah M, Bossier P (2018) Identification of N-acyl homoserine lactone‐degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 125(2):356–369

    Article  CAS  PubMed  Google Scholar 

  29. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291. https://doi.org/10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  30. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein science: a publication of the Protein Society 2(9):1511–1519. https://doi.org/10.1002/pro.5560020916

    Article  CAS  PubMed  Google Scholar 

  31. Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure, vol 253. Science (New York, pp 164–170. 5016https://doi.org/10.1126/science.1853201

  32. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723. https://doi.org/10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  33. DeLano WL (2002) The PyMOL molecular graphics system DeLano Scientific LLC. San Carlos, CA, USA

    Google Scholar 

  34. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  35. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61(8):3891–3898

    Article  CAS  PubMed  Google Scholar 

  36. Raafat MM, Ali-Tammam M, Ali AE (2019) Quorum quenching activity of Bacillus cereus isolate 30b confers antipathogenic effects in Pseudomonas aeruginosa. Infect Drug Resist 12:1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149(Pt 6):1541–1550. https://doi.org/10.1099/mic.0.26269-0

    Article  CAS  PubMed  Google Scholar 

  38. Liu D, Thomas PW, Momb J, Hoang QQ, Petsko GA, Ringe D, Fast W (2007) Structure and specificity of a quorum-quenching lactonase (AiiB) from Agrobacterium tumefaciens. Biochemistry 46(42):11789–11799. https://doi.org/10.1021/bi7012849

    Article  CAS  PubMed  Google Scholar 

  39. Ryu DH, Lee SW, Mikolaityte V, Kim YW, Jeong HY, Lee SJ, Lee CH, Lee JK (2020) Identification of a second type of AHL-lactonase from Rhodococcus sp. BH4, belonging to the α/β hydrolase superfamily. J Microbiol Biotechnol 30(6):937–945. https://doi.org/10.4014/jmb.2001.01006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen B, Peng M, Tong W, Zhang Q, Song Z (2020) The Quorum quenching bacterium Bacillus licheniformis T-1 protects zebrafish against Aeromonas hydrophila infection. Probiotics and antimicrobial proteins 12(1):160–171. https://doi.org/10.1007/s12602-018-9495-7

    Article  CAS  PubMed  Google Scholar 

  41. Kim MH, Choi WC, Kang HO, Lee JS, Kang BS, Kim KJ, Lee JK (2005) The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-L-homoserine lactone hydrolase. Proceedings of the National Academy of Sciences, 102(49), 17606–17611

  42. Swain MR, Ray RC (2009) Biocontrol and other beneficial activities of Bacillus subtilis isolated from cowdung microflora. Microbiol Res 164(2):121–130

    Article  CAS  PubMed  Google Scholar 

  43. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. https://doi.org/10.1093/nar/gku340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hong KW, Koh CL, Sam CK, Yin WF, Chan KG (2012) Quorum quenching revisited—from signal decays to signalling confusion. Sensors 12(4):4661–4696

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yasutake Y, Kusada H, Ebuchi T, Hanada S, Kamagata Y, Tamura T (2017) Bifunctional quorum-quenching and antibiotic-acylase MacQ forms a 170-kDa capsule-shaped molecule containing spacer polypeptides. Sci Rep 7:8946. https://doi.org/10.1038/s41598-017-09399-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bar-Rogovsky H, Hugenmatter A, Tawfik DS (2013) The evolutionary origins of detoxifying enzymes: the mammalian serum paraoxonases (PONs) relate to bacterial homoserine lactonases. J Biol Chem 288(33):23914–23927. https://doi.org/10.1074/jbc.M112.427922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank employees of Kılıç Seafood Inc., Didim Incubation and Adaptation Facility, for their support. Professor Dr. Özgür Ceylan’s contribution to this study is also gratefully acknowledged.

Funding

This project was completed with the generous financial support of Ege University under grant number FM-GAP-2022-24187.

Author information

Authors and Affiliations

Authors

Contributions

Gülperi Bulut, İhsan Yaşa and Asiye Esra Eren Eroğlu planned the study. Gülperi Bulut and Asiye Esra Eren Eroğlu carried out laboratory tests, examined the data, and wrote the manuscript. İhsan Yaşa assessed the manuscript for scope. The manuscript has passed review by all authors, and all of them agree to submit for publication.

Corresponding author

Correspondence to Asiye Esra Eren Eroğlu.

Ethics declarations

Conflict of Interests

The authors affirm that they have no conflicts of expediency with the contents of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulut, G., Yaşa, İ. & Eren Eroğlu, A.E. Selection and Molecular Response of AHL-lactonase (aiiA) Producing Bacillus sp. Under Penicillin G-induced Conditions. Protein J 42, 427–436 (2023). https://doi.org/10.1007/s10930-023-10115-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10115-7

Keywords

Navigation