Skip to main content
Log in

Expression of Xanthorhodopsin in Escherichia coli

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Xanthorhodopsin (XR) from Salinibacter ruber is a light-driven proton pump containing retinal and a light-harvesting carotenoid antenna salinixanthin. Previous structure-functional studies of XR were conducted using a protein isolated from the native host only due to the absence of heterologous expression in Escherichia coli. In this paper, we describe cell-free synthesis and incorporation in lipid–protein nanodiscs of the recombinant XR that demonstrated its principal compatibility with E. coli biosynthetic machinery. To produce XR in E. coli, three C-terminal deletion variants of this protein were constructed. In contrast to the full-length XR, their expression resulted in efficient synthesis in E. coli cells. However, cells producing recombinant XR variants bound retinal only upon growth in minimal medium, not in the rich one. The XR3 variant with deletion of ten C-terminal amino acid residues was obtained and characterized. Its absorption spectrum and photocycle kinetics were close to those reported for XR isolated from S. ruber membranes and bleached from salinixanthin. We have also constructed the first mutants of XR, H62M and D96N, and examined their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data are available from the corresponding authors on reasonable request.

References

  1. Balashov SP, Imasheva ES, Boichenko VA, Antón J, Wang JM, Lanyi JK (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lanyi JK, Balashov SP (2011) Xanthorhodopsin. In: Ventosa A, Oren A, Ma Y (eds) Halophiles and hypersaline environments. Springer, Berlin, pp 319–340

    Chapter  Google Scholar 

  3. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci USA 105:16561–16565. https://doi.org/10.1073/pnas.0807162105

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lutnaes BF, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343. https://doi.org/10.1021/np020125c

    Article  CAS  PubMed  Google Scholar 

  5. Boichenko VA, Wang JM, Antón J, Lanyi JK, Balashov SP (2006) Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. Biochim Biophys Acta (BBA) Bioenerg 1757:1649–1656. https://doi.org/10.1016/j.bbabio.2006.08.012

    Article  CAS  Google Scholar 

  6. Balashov SP, Imasheva ES, Wang JM, Lanyi JK (2008) Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys J 95:2402–2414. https://doi.org/10.1529/biophysj.108.132175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chazan A, Das I, Fujiwara T, Murakoshi S, Shihoya W, Rozenberg A, Molina-Marquez A, Larom S, Pushkarev A, Malakar P et al (2022) Phototrophy by antenna-containing rhodopsin pumps in aquatic environments. Nature. https://doi.org/10.1038/s41586-023-05774-6

    Article  Google Scholar 

  8. Imasheva ES, Balashov SP, Choi AR, Jung KH, Lanyi JK (2009) Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48:10948–10955. https://doi.org/10.1021/bi901552x

    Article  CAS  PubMed  Google Scholar 

  9. Polivka T, Balashov SP, Chabera P, Imasheva ES, Yartsev A, Sundstrom V, Lanyi JK (2009) Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys J 96:2268–2277. https://doi.org/10.1016/j.bpj.2009.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Imasheva ES, Balashov SP, Wang JM, Lanyi JK (2011) Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. J Membr Biol 239:95–104. https://doi.org/10.1007/s00232-010-9322-x

    Article  CAS  PubMed  Google Scholar 

  11. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    Article  PubMed  Google Scholar 

  12. Petrovskaya LE, Lukashev EP, Chupin VV, Sychev SV, Lyukmanova EN, Kryukova EA, Ziganshin RH, Spirina EV, Rivkina EM, Khatypov RA, Erokhina LG, Gilichinsky DA, Shuvalov VA, Kirpichnikov MP (2010) Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump. FEBS Lett 584:4193–4196

    Article  CAS  PubMed  Google Scholar 

  13. Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, Sudo Y (2016) X-ray crystallographic structure of thermophilic rhodopsin: implications for high thermal stability and optogenetic function. J Biol Chem 291:12223–12232. https://doi.org/10.1074/jbc.M116.719815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shimono K, Goto M, Kikukawa T, Miyauchi S, Shirouzu M, Kamo N, Yokoyama S (2009) Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid. Prot Sci 18:2160–2171. https://doi.org/10.1002/pro.230

    Article  CAS  Google Scholar 

  15. Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung K-H, Kamo N, Yokoyama S (2011) crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol 411:986–998. https://doi.org/10.1016/j.jmb.2011.06.028

    Article  CAS  PubMed  Google Scholar 

  16. Mongodin EF, Nelson K, Daugherty S, Deboy R, Wister J, Khouri H, Weidman J, Walsh D, Papke R, Sanchez Perez G (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lyukmanova E, Shenkarev Z, Khabibullina N, Kopeina G, Shulepko M, Paramonov A, Mineev K, Tikhonov R, Shingarova L, Petrovskaya L (2012) Lipid–protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes. Biochim Biophys Acta (BBA) Biomembr 1818:349–358. https://doi.org/10.1016/j.bbamem.2011.10.020

    Article  CAS  Google Scholar 

  18. Shenkarev ZO, Lyukmanova EN, Butenko IO, Petrovskaya LE, Paramonov AS, Shulepko MA, Nekrasova OV, Kirpichnikov MP, Arseniev AS (2013) Lipid–protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim Biophys Acta (BBA) Biomembr 1828:776–784. https://doi.org/10.1016/j.bbamem.2012.11.005

    Article  CAS  Google Scholar 

  19. Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  20. Siletsky SA, Lukashev EP, Mamedov MD, Borisov VB, Balashov SP, Dolgikh DA, Rubin AB, Kirpichnikov MP, Petrovskaya LE (2021) His57 controls the efficiency of ESR, a light-driven proton pump from Exiguobacterium sibiricum at low and high pH. Biochim Biophys Acta (BBA) Bioenerg 1862:148328. https://doi.org/10.1016/j.bbabio.2020.148328

    Article  CAS  Google Scholar 

  21. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  PubMed  Google Scholar 

  22. Imasheva ES, Balashov SP, Wang JM, Smolensky E, Sheves M, Lanyi JK (2008) Chromophore interaction in xanthorhodopsin–retinal dependence of salinixanthin binding. Photochem Photobiol 84:977–984. https://doi.org/10.1111/j.1751-1097.2008.00337.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Denisov I, Grinkova Y, Lazarides A, Sligar S (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3487

    Article  CAS  PubMed  Google Scholar 

  24. Ranaghan MJ, Schwall CT, Alder NN, Birge RR (2011) Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 133:18318–18327. https://doi.org/10.1021/ja2070957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856. https://doi.org/10.1021/nl025623k

    Article  CAS  Google Scholar 

  26. Balashov SP, Imasheva ES, Lanyi JK (2006) Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin. Biochemistry 45:10998–11004. https://doi.org/10.1021/bi061098i

    Article  CAS  PubMed  Google Scholar 

  27. Luirink J, Yu Z, Wagner S, de Gier J-W (2012) Biogenesis of inner membrane proteins in Escherichia coli. Biochim Biophys Acta (BBA) Bioenerg 1817:965–976

    Article  CAS  Google Scholar 

  28. Cymer F, Von Heijne G, White SH (2015) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427:999–1022

    Article  CAS  PubMed  Google Scholar 

  29. Bogdanov M, Dowhan W, Vitrac H (2014) Lipids and topological rules governing membrane protein assembly. Biochim Biophys Acta (BBA) Mol Cell Res 1843:1475–1488. https://doi.org/10.1016/j.bbamcr.2013.12.007

    Article  CAS  Google Scholar 

  30. von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  Google Scholar 

  31. Rozenberg A, Inoue K, Kandori H, Béjà O (2021) Microbial rhodopsins: the last two decades. Annu Rev Microbiol 75:427–447

    Article  PubMed  Google Scholar 

  32. Kovalev K, Volkov D, Astashkin R, Alekseev A, Gushchin I, Haro-Moreno JM, Chizhov I, Siletsky S, Mamedov M, Rogachev A (2020) High-resolution structural insights into the heliorhodopsin family. Proc Natl Acad Sci USA 117:4131–4141. https://doi.org/10.1073/pnas.1915888117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Balashov SP, Petrovskaya LE, Lukashev EP, Imasheva ES, Dioumaev AK, Wang JM, Sychev SV, Dolgikh DA, Rubin AB, Kirpichnikov MP, Lanyi JK (2012) Aspartate-histidine interaction in the retinal Schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum. Biochemistry 51:5748–5762. https://doi.org/10.1021/bi300409m

    Article  CAS  PubMed  Google Scholar 

  34. Bergo VB, Sineshchekov OA, Kralj JM, Partha R, Spudich EN, Rothschild KJ, Spudich JL (2009) His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps. J Biol Chem 284:2836–2843. https://doi.org/10.1074/jbc.M803792200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hempelmann F, Holper S, Verhoefen MK, Woerner AC, Kohler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C (2011) His75–Asp97 cluster in green proteorhodopsin. J Am Chem Soc 133:4645–4654. https://doi.org/10.1021/Ja111116a

    Article  CAS  PubMed  Google Scholar 

  36. Stern LJ, Ahl PL, Marti T, Mogi T, Dunach M, Berkowitz S, Rothschild KJ, Khorana HG (1989) Substitution of membrane-embedded aspartic acids in bacteriorhodopsin causes specific changes in different steps of the photochemical cycle. Biochemistry 28:10035–10042

    Article  CAS  PubMed  Google Scholar 

  37. Otto H, Marti T, Holz M, Mogi T, Stern LJ, Engel F, Khorana HG, Heyn MP (1990) Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Proc Natl Acad Sci USA 87:1018–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zimanyi L, Cao Y, Chang M, Ni B, Needleman R, Lanyi JK (1992) The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements. Photochem Photobiol 56:1049–1055. https://doi.org/10.1111/j.1751-1097.1992.tb09728.x

    Article  CAS  PubMed  Google Scholar 

  39. Kataoka M, Kamikubo H, Tokunagga F, Brown LS, Yamazaki Y, Maeda A, Sheves M, Needleman R, Lanyi JK (1994) Energy coupling in an ion pump: the reprotonation switch of bacteriorhodopsin. J Mol Biol 243:621–638

    Article  CAS  PubMed  Google Scholar 

  40. Dioumaev AK, Brown LS, Shih J, Spudich EN, Spudich JL, Lanyi JK (2002) Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41:5348–5358

    Article  CAS  PubMed  Google Scholar 

  41. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172. https://doi.org/10.3389/fmicb.2014.00172

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schlegel S, Hjelm A, Baumgarten T, Vikström D, de Gier J-W (2014) Bacterial-based membrane protein production. Biochim Biophys Acta (BBA) Mol Cell Res 1843:1739–1749

    Article  CAS  Google Scholar 

  43. Snijder HJ, Hakulinen J (2016) Membrane protein production in E. coli for applications in drug discovery. Adv Exp Med Biol 896:59–77. https://doi.org/10.1007/978-3-319-27216-0_5

    Article  CAS  PubMed  Google Scholar 

  44. Pandey A, Shin K, Patterson RE, Liu X-Q, Rainey JK (2016) Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 94:507–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pushkarev A, Béjà O (2016) Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J 10:2331–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shimono K, Iwamoto M, Sumi M, Kamo N (1997) Functional expression of pharaonis phoborhodopsin in Eschericha coli. FEBS Lett 420:54–56

    Article  CAS  PubMed  Google Scholar 

  47. Hohenfeld IP, Wegener AA, Engelhard M (1999) Purification of histidine tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II functionally expressed in Escherichia coli. FEBS Lett 442:198–202

    Article  CAS  PubMed  Google Scholar 

  48. Kamo N, Hashiba T, Kikukawa T, Araiso T, Ihara K, Nara T (2006) A light-driven proton pump from Haloterrigena turkmenica: functional expression in Escherichia coli membrane and coupling with a H+ co-transporter. Biochem Biophys Res Comm 341:285–290

    Article  CAS  PubMed  Google Scholar 

  49. Yamashita Y, Kikukawa T, Tsukamoto T, Kamiya M, Aizawa T, Kawano K, Miyauchi S, Kamo N, Demura M (2011) Expression of salinarum halorhodopsin in Escherichia coli cells: solubilization in the presence of retinal yields the natural state. Biochim Biophys Acta (BBA) Biomembr 1808:2905–2912

    Article  CAS  Google Scholar 

  50. Gopal GJ, Kumar A (2013) Strategies for the production of recombinant protein in Escherichia coli. Prot J 32:419–425. https://doi.org/10.1007/s10930-013-9502-5

    Article  CAS  Google Scholar 

  51. Sachse R, Dondapati SK, Fenz SF, Schmidt T, Kubick S (2014) Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes. FEBS Lett 588:2774–2781

    Article  CAS  PubMed  Google Scholar 

  52. Henrich E, Hein C, Dötsch V, Bernhard F (2015) Membrane protein production in Escherichia coli cell-free lysates. FEBS Lett 589:1713–1722

    Article  CAS  PubMed  Google Scholar 

  53. Von Heijne G (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341:456–458

    Article  Google Scholar 

  54. Nilsson I, von Heijne G (1990) Fine-tuning the topology of a polytopic membrane protein: role of positively and negatively charged amino acids. Cell 62:1135–1141

    Article  CAS  PubMed  Google Scholar 

  55. Kim H, Paul S, Jennity J, Inouye M (1994) Reversible topology of a bifunctional transmembrane protein depends upon the charge balance around its transmembrane domain. Mol Microbiol 11:819–831

    Article  CAS  PubMed  Google Scholar 

  56. Oren A (2013) Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 342:1–9. https://doi.org/10.1111/1574-6968.12094

    Article  CAS  PubMed  Google Scholar 

  57. Baker JA, Wong W-C, Eisenhaber B, Warwicker J, Eisenhaber F (2017) Charged residues next to transmembrane regions revisited: “Positive-inside rule” is complemented by the “negative inside depletion/outside enrichment rule.” BMC Biol 15:66–66. https://doi.org/10.1186/s12915-017-0404-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lyukmanova E, Shenkarev Z, Khabibullina N, Kulbatskiy D, Shulepko M, Petrovskaya L, Arseniev A, Dolgikh D, Kirpichnikov M (2012) N-terminal fusion tags for effective production of G-protein-coupled receptors in bacterial cell-free systems. Acta Nat 4:58

    Article  CAS  Google Scholar 

  59. Bratanov D, Balandin T, Round E, Shevchenko V, Gushchin I, Polovinkin V, Borshchevskiy V, Gordeliy V (2015) An approach to heterologous expression of membrane proteins. The case of bacteriorhodopsin. PLoS One 10:e0128390

    Article  PubMed  PubMed Central  Google Scholar 

  60. Marshall Stephen S, Niesen Michiel JM, Müller A, Tiemann K, Saladi Shyam M, Galimidi Rachel P, Zhang B, Clemons William M, Miller Thomas F (2016) A link between integral membrane protein expression and simulated integration efficiency. Cell Rep 16:2169–2177. https://doi.org/10.1016/j.celrep.2016.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seppälä S, Slusky JS, Lloris-Garcerá P, Rapp M, Gv H (2010) Control of membrane protein topology by a single C-terminal residue. Science 328:1698–1700. https://doi.org/10.1126/science.1188950

    Article  CAS  PubMed  Google Scholar 

  62. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408. https://doi.org/10.1038/nbt1029

    Article  CAS  PubMed  Google Scholar 

  63. Rodnina MV (2016) The ribosome in action: tuning of translational efficiency and protein folding. Prot Sci 25:1390–1406

    Article  CAS  Google Scholar 

  64. Dai X, Zhu M, Warren M, Balakrishnan R, Patsalo V, Okano H, Williamson JR, Fredrick K, Wang Y-P, Hwa T (2016) Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth. Nat Microbiol 2:16231–16231. https://doi.org/10.1038/nmicrobiol.2016.231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shokri A, Sanden AM, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392. https://doi.org/10.1007/s00253-001-0889-0

    Article  CAS  PubMed  Google Scholar 

  66. Li S-J, Cronan JE Jr (1993) Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis. J Bacteriol 175:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chuon K, Shim J-G, Kim S-H, Cho S-G, Meas S, Kang K-W, Kim J-H, Das I, Sheves M, Jung K-H (2021) The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system. J Photochem Photobiol B Biol 221:112241. https://doi.org/10.1016/j.jphotobiol.2021.112241

    Article  CAS  Google Scholar 

  68. Shim J-G, Choun K, Kang K-W, Kim J-H, Cho S-G, Jung K-H (2022) The binding of secondary chromophore for thermally stable rhodopsin makes more stable with temperature. Prot Sci 31:e4386. https://doi.org/10.1002/pro.4386

    Article  CAS  Google Scholar 

  69. Lindholm L, Ariöz C, Jawurek M, Liebau J, Mäler L, Wieslander Å, von Ballmoos C, Barth A (2015) Effect of lipid bilayer properties on the photocycle of green proteorhodopsin. Biochim Biophys Acta (BBA) Bioenerg 1847:698–708

    Article  CAS  Google Scholar 

  70. Salas-Estrada LA, Leioatts N, Romo TD, Grossfield A (2018) Lipids alter rhodopsin function via ligand-like and solvent-like interactions. Biophys J 114:355–367. https://doi.org/10.1016/j.bpj.2017.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Imasheva ES, Balashov SP, Wang JM, Lanyl JK (2006) pH-dependent transitions in xanthorhodopsin. Photochem Photobiol 82:1406–1413. https://doi.org/10.1111/j.1751-1097.2006.tb09792.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tsukamoto T, Kikukawa T, Kurata T, Jung KH, Kamo N, Demura M (2013) Salt bridge in the conserved His-Asp cluster in Gloeobacter rhodopsin contributes to trimer formation. FEBS Lett 587:322–327. https://doi.org/10.1016/j.febslet.2012.12.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Jennifer M. Wang for her excellent technical assistance.

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2021-1354 from 07.10.2021) (protein production and spectroscopic studies), Russian Scientific Foundation Grant No. 22-14-00104 (mutant genes construction), and, at early stages, by grants from NIH (GM29498), DOE (DEFG03-86ER13525) to J.K.L., and ARO (W911NF-06-01-0020 and W911NF-09-1-0243) to S.P.B. and J.K.L. (gene cloning and experiments with SX).

Author information

Authors and Affiliations

Authors

Contributions

LEP, EPL and SPB designed the research and analyzed data. LEP, EPL, RHZ, EAK, ENL, and MAS carried out the experiments. EGM and SPB advised and supervised measurements. Project administration, EGM, MPK, ABR, JKL and SPB. LEP, EPL, ENL, DAD and SPB wrote the text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lada E. Petrovskaya or Sergei P. Balashov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 235 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovskaya, L.E., Lukashev, E.P., Lyukmanova, E.N. et al. Expression of Xanthorhodopsin in Escherichia coli. Protein J 42, 408–420 (2023). https://doi.org/10.1007/s10930-023-10109-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10109-5

Keywords

Navigation