Skip to main content

Advertisement

Log in

Molecular and Computational Analysis Identify Statins as Selective Inhibitors of Human Butyrylcholinesterase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cholinesterase enzyme family consists of acetylcholinesterase (AChE, 3.1.1.7), the major enzyme responsible for hydrolysis of acetylcholine at cholinergic synapses, and butyrylcholinesterase (BChE, 3.1.1.8) a detoxification enzyme of plasma. Statins are cholesterol-lowering medications utilized as protective medicaments in stroke and Alzheimer’s disease, which cholinesterases are associated with. Thus, in this study, we characterized the inhibitory effects and mechanisms of common statins, rosuvastatin, atorvastatin, simvastatin and lovastatin, on human erythrocyte AChE and purified serum BChE using in vitro and in silico methods. Kinetic assays identified statins as selective non-competitive inhibitors of human serum BChE. The IC50 and Km values were found as 194.7 ± 55.2 µM and 1.03 ± 0.2 µM for rosuvastatin, 492.5 ± 55.1 µM and 7.2 ± 0.3 µM for atorvastatin, 14.2 ± 0.3 µM and 202.7 ± 23.2 µM for lovastatin, and 17.6 ± 0.1 µM and 207.2 ± 13.2 µM for simvastatin, respectively. The compounds did not display considerable inhibition against AChE. Molecular docking predicted good affinity and strong interactions with the BChE active site for atorvastatin and rosuvastatin. Current study identifies rosuvastatin as the most specific and selective inhibitor of human BChE among the tested statins. As selective inhibitors of BChE statins have the potential to be re-evaluated as medicaments due to their pleiotropic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

Abbreviations

AChE:

acetylcholinesterase

BChE:

butyrylcholinesterase

ATOR:

atorvastatin

LOVA:

lovastatin

ROSU:

rosuvastatin

SIM:

simvastatin

BBB:

blood-brain barrier

References

  1. Soreq H, Seidman S (2001) Acetylcholinesterase-new roles for an old actor. Nat Rev Neurosci 2(4):294–302

    Article  CAS  PubMed  Google Scholar 

  2. Lockridge O (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 148:34–46

    Article  CAS  PubMed  Google Scholar 

  3. Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4(2):131–138

    Article  CAS  PubMed  Google Scholar 

  4. Bodur E, Cokugras AN, Tezcan EF (2001) Inhibition effects of benactyzine and drofenine on human serum butyrylcholinesterase. Arch Biochem Biophys 386(1):25–29

    Article  CAS  PubMed  Google Scholar 

  5. Ryhanen RJ (1983) Pseudocholinesterase activity in some human body fluids. Gen Pharmacol 14(4):459–460

    Article  CAS  PubMed  Google Scholar 

  6. Jain R, Kutty KM, Huang SN, Kean K (1983) Pseudocholinesterase/high-density lipoprotein cholesterol ratio in serum of normal persons and of hyperlipoproteinemics. Clin Chem 29(6):1031–1033

    Article  CAS  PubMed  Google Scholar 

  7. Iwasaki T, Yoneda M, Nakajima A, Terauchi Y (2007) Serum butyrylcholinesterase is strongly associated with adiposity, the serum lipid profile and insulin resistance. Intern Med 46(19):1633–1639

    Article  PubMed  Google Scholar 

  8. Bulut S, Bodur E, Colak R, Turnagol H (2013) Effects of conjugated linoleic acid supplementation and exercise on post-heparin lipoprotein lipase, butyrylcholinesterase, blood lipid profile and glucose metabolism in young men. Chem Biol Interact 203(1):323–329

    Article  CAS  PubMed  Google Scholar 

  9. Valle-Martos R, Valle M, Martos R, Cañete R, Jiménez-Reina L, Cañete MD (2021) Liver enzymes correlate with metabolic syndrome, inflammation, and endothelial dysfunction in Prepubertal Children with obesity. Front Pediatr 16:9:629346

    Article  Google Scholar 

  10. Xing S, Li Q, Xiong B, Chen Y, Feng F, Liu W, Sun H (2021) Structure and therapeutic uses of butyrylcholinesterase: application in detoxification, Alzheimer’s disease, and fat metabolism. Med Res Rev 41(2):858–901

    Article  CAS  PubMed  Google Scholar 

  11. Schachter M (2005) Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundam Clin Pharmacol 19(1):117–125

    Article  CAS  PubMed  Google Scholar 

  12. Kosowski M, Smolarczyk-Kosowska J, Hachuła M, Maligłówka M, Basiak M, Machnik G, Pudlo R, Okopień B (2021) The Effects of statins on neurotransmission and their neuroprotective role in Neurological and Psychiatric Disorders. Molecules 26(10):2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lerouet D, Marchand-Leroux C, Besson VC (2021) Neuropharmacology in traumatic brain injury: from preclinical to clinical neuroprotection? Fundam Clin Pharmacol 35(3):524–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haidar MK, Timur SS, Kazanci A, Turkoglu OF, Gürsoy RN, Nemutlu E, Sargon MF, Bodur E, Gök M, Ulubayram K, Öner L, Eroğlu H (2020) Composite nanofibers incorporating alpha lipoic acid and atorvastatin provide neuroprotection after peripheral nerve injury in rats. Eur J Pharm Biopharm 153:1–13

    Article  CAS  PubMed  Google Scholar 

  15. Muacević-Kataneca D, Bradamante V, Reinec Z, Sucić M, Poljicanin T, Busljeta I, Metelko Z (2005) Clinical study on the effect of simvastatin on butyrylcholinesterase activity. Arzneimittelforschung 55(5):271–275

    PubMed  Google Scholar 

  16. Darvesh S, Martin E, Walsh R, Rockwood K (2004) Clin Biochem 37(1):42–49

    Article  CAS  PubMed  Google Scholar 

  17. Pytel E, Bukowska B, Koter-Michalak M, Olszewska-Banaszczyk M, Gorzelak-Pabiś P, Broncel M (2017) Effect of intensive lipid-lowering therapies on cholinesterase activity in patients with coronary artery disease. Pharmacol Rep 69(1):150–155

    Article  CAS  PubMed  Google Scholar 

  18. Cibicková L, Palicka V, Cibicek N, Cermáková E, Micuda S, Bartosová L, Jun D (2007) Differential effects of statins and alendronate on cholinesterases in serum and brain of rats. Physiol Res 56(6):765–770

    Article  PubMed  Google Scholar 

  19. Gelosa P, Castiglioni L, Camera M, Sironi L (2020) Repurposing of drugs approved for cardiovascular diseases: opportunity or mirage? Biochem Pharmacol 177:113895

    Article  CAS  PubMed  Google Scholar 

  20. Samant NP, Gupta GL (2021) Novel therapeutic strategies for Alzheimer’s disease targeting brain cholesterol homeostasis. Eur J Neurosci 53(2):673–686

    Article  CAS  PubMed  Google Scholar 

  21. Bodur E (2010) Human serum butyrylcholinesterase interactions with cisplatin and cyclophosphamide. Biochimie 92(8):979–984

    Article  CAS  PubMed  Google Scholar 

  22. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  23. Lu C, Wu C, Ghoreishi D, Chen W, Wang L, Damm W et al (2021) OPLS4: improving Force Field Accuracy on challenging regimes of Chemical Space. J Chem Theory Comput 17(7):4291–4300

    Article  CAS  PubMed  Google Scholar 

  24. Chalupova K, Korabecny J, Bartolini M, Monti B, Lamba D, Caliandro R et al (2019) Novel tacrine-tryptophan hybrids: multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur J Med Chem 168:491–514

    Article  CAS  PubMed  Google Scholar 

  25. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

    Article  PubMed  Google Scholar 

  27. Rosenberry TL, Brazzolotto X, Macdonald IR, Wandhammer M, Trovaslet-Leroy M, Darvesh S et al (2017) Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study.Molecules. ;22(12)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Bodur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article, financial or otherwise.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atay, M.S., Sari, S. & Bodur, E. Molecular and Computational Analysis Identify Statins as Selective Inhibitors of Human Butyrylcholinesterase. Protein J 42, 104–111 (2023). https://doi.org/10.1007/s10930-023-10090-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-023-10090-z

Keywords

Navigation