Skip to main content

Advertisement

Log in

Proteomic Analysis Reveals Differential Protein Expression Induced by Inhibition of Prolyl Oligopeptidase in Filarial Parasites

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Prolyl oligopeptidase (POP) plays a crucial role in the processing and degradation of neuropeptides and regulates inositol trisphosphate (IP3) signaling in mammals. We have reported that POP inhibition leads to IP3-mediated calcium efflux leading to mitochondrial-mediated apoptosis in the filarial parasite Setaria cervi. This study further elucidates the effect of altered calcium homeostasis on the proteome of filarial parasites. Adult parasites were treated with POP’s specific inhibitor, Z-Pro-prolinal (ZPP), for 7 h. Cytosolic and mitochondrial proteome was analyzed using 2D gel electrophoresis coupled with MALDI-MS/MS. Phosphoproteins were also analyzed in the cytosolic fraction of the parasites. The phosphoprotein analysis revealed 7, and 9 spots in the cytosolic fraction of control and ZPP-treated parasites, respectively. The two identified protein spots in the treated set were found to be involved in G protein signaling. In cytosolic fraction, 109 and 112 protein spots were observed in control and treated parasites, respectively. Of these, 56 upregulated and 32 downregulated protein spots were observed in the treated set. On the other hand, 50 and 47 protein spots were detected in the mitochondrial fraction of control and treated parasites, respectively. Of these spots, 18 upregulated and 12 down-regulated protein spots were found in treated parasites. In silico analysis showed that the identified proteins were involved in energy metabolism, calcium signaling, stress response, and cytoskeleton organization. These findings correlate with our previous results suggesting the important regulatory role of POP in signaling and different metabolic pathways of filarial parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rawlings ND, Barrett AJ (1994) Families of serine peptidases. Methods Enzymol. https://doi.org/10.1016/0076-6879(94)44004-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Myöhänen TT, García-Horsman JA, Tenorio-Laranga J, Männistö PT (2009) Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem. https://doi.org/10.1369/jhc.2009.953711

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zolotov NN, Schepetkin IA, Voronina TA et al (2021) Therapeutic Effect of Novel Cyanopyrrolidine-Based Prolyl Oligopeptidase Inhibitors in Rat Models of Amnesia. Front Chem. https://doi.org/10.3389/fchem.2021.780958

    Article  PubMed  PubMed Central  Google Scholar 

  4. Williams RSB, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature. https://doi.org/10.1038/417292a

    Article  PubMed  Google Scholar 

  5. Schulz I, Zeitschel U, Rudolph T et al (2005) Subcellular localization suggests novel functions for prolyl endopeptidase in protein secretion. J Neurochem. https://doi.org/10.1111/j.1471-4159.2005.03237.x

    Article  PubMed  Google Scholar 

  6. Brandt I, Scharpé S, Lambeir AM (2007) Suggested functions for prolyl oligopeptidase: A puzzling paradox. Clin Chim Acta. https://doi.org/10.1016/j.cca.2006.09.001

    Article  PubMed  Google Scholar 

  7. Ohtsuki S, Homma K-I, Kurata S, Natori2 S (1997) Nuclear Localization and Involvement in DNA Synthesis of Sarcophaga Prolyl Endopeptidase. J Biochem. https://doi.org/10.1093/oxfordjournals.jbchem.a021712

    Article  PubMed  Google Scholar 

  8. Grellier P, Vendeville S, Joyeau R et al (2001) Trypanosoma cruzi Prolyl Oligopeptidase Tc80 Is Involved in Nonphagocytic Mammalian Cell Invasion by Trypomastigotes. J Biol Chem. https://doi.org/10.1074/jbc.M106017200

    Article  PubMed  Google Scholar 

  9. D Bastos IM, Grellier P, Martins NF et al (2005) Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells. Biochem J. https://doi.org/10.1042/BJ20041049

    Article  Google Scholar 

  10. Wadhawan M, Tiwari S, Sharma S, Rathaur S (2018) Identification and characterization of a novel prolyl oligopeptidase in filarial parasite Setaria cervi. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2017.12.093

    Article  PubMed  Google Scholar 

  11. Rathaur S, Yadav M, Singh N, Singh A (2011) Effect of diethylcarbamazine, butylated hydroxy anisole and methyl substituted chalcone on filarial parasite Setaria cervi: Proteomic and biochemical approaches. J Proteom. https://doi.org/10.1016/j.jprot.2011.04.020

    Article  Google Scholar 

  12. Tiwari S, Wadhawan M, Singh N, Rathaur S (2015) Effect of CDNB on filarial thioredoxin reductase: A proteomic and biochemical approach. J Proteom. https://doi.org/10.1016/j.jprot.2014.10.007

    Article  Google Scholar 

  13. Bradford MM (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. https://doi.org/10.1006/abio.1976.9999

    Article  PubMed  Google Scholar 

  14. Candiano G, Bruschi M, Musante L et al (2004) Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. https://doi.org/10.1002/elps.200305844

  15. Schulenberg B, Goodman TN, Aggeler R et al (2004) Characterization of dynamic and steady-state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry. Electrophoresis. https://doi.org/10.1002/elps.200406007

  16. Kumar A, Thakur MK (2014) Analysis of Presenilin 1 and 2 interacting proteins in mouse cerebral cortex during development. Int J Dev Neurosci. https://doi.org/10.1016/j.ijdevneu.2014.08.010

    Article  PubMed  Google Scholar 

  17. Baghel MS, Thakur MK (2017) Differential proteome profiling in the hippocampus of amnesic mice. Hippocampus. https://doi.org/10.1002/hipo.22735

    Article  PubMed  Google Scholar 

  18. Szklarczyk D, Gable AL, Nastou KC et al (2021) The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa1074

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. https://doi.org/10.1101/gr.1239303

    Article  PubMed  PubMed Central  Google Scholar 

  20. Raman K (2010) Construction and analysis of protein-protein interaction networks. Autom Exp. https://doi.org/10.1186/1759-4499-2-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rea D, Fülöp V (2006) Structure-Function Properties of Prolyl Oligopeptidase Family Enzymes. Cell Biochem Biophys. https://doi.org/10.1385/CBB:44:3:349

  22. Moon S (2003) Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. https://doi.org/10.1016/S0962-8924(02)00004-1

    Article  PubMed  Google Scholar 

  23. Ellis C, Moran M, McCormick F, Pawson T (1990) Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature. https://doi.org/10.1038/343377a0

    Article  PubMed  Google Scholar 

  24. Settleman J, Narasimhan V, Foster LC, Weinberg RA (1992) Molecular Cloning of cDNAs Encoding the GAP-Associated Protein pl 90: Implications for a Signaling Pathway from Ras to the Nucleus. Cell. https://doi.org/10.1016/0092-8674(92)90454-k

    Article  PubMed  Google Scholar 

  25. Ridley AJ, Self AJ, Kasmi F et al (1993) rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo. EMBO J. https://doi.org/10.1002/j.1460-2075.1993.tb06210.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang P, Mende U (2014) Functional role, mechanisms of regulation, and therapeutic potential of regulator of G protein signaling 2 in the heart. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2013.07.002

    Article  PubMed  Google Scholar 

  27. Urano D, Phan N, Jones JC et al (2012) Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nat Cell Biol. https://doi.org/10.1038/ncb2568

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hollinger S (2002) Cellular Regulation of RGS Proteins: Modulators and Integrators of G Protein Signaling. Pharmacol Rev. https://doi.org/10.1124/pr.54.3.527

    Article  PubMed  Google Scholar 

  29. Fu Y, Lim S, Urano D et al (2014) Reciprocal encoding of signal intensity and duration in a glucose-sensing circuit. Cell. https://doi.org/10.1016/j.cell.2014.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tunc-Ozdemir M, Urano D, KumarJaiswal D et al (2016) Direct modulation of heterotrimeric g proteincoupled signaling by a receptor kinase complex. J Biol Chem. https://doi.org/10.1074/jbc.C116.736702

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sjögren B (2017) The evolution of regulators of G protein signalling proteins as drug targets – 20 years in the making: IUPHAR Review 21. Br J Pharmacol. https://doi.org/10.1111/bph.13716

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tanabe T, Otani H, Bao L et al (1996) Intracellular signaling pathway of substance P-induced superoxide production in human neutrophils. Eur J Pharmacol. https://doi.org/10.1016/0014-2999(95)00816-0

    Article  PubMed  Google Scholar 

  33. Opel A, Nobles M, Montaigne D et al (2015) Absence of the regulator of G-protein Signaling, RGS4, predisposes to atrial fibrillation and is associated with abnormal calcium handling. J Biol Chem. https://doi.org/10.1074/jbc.M115.666719

    Article  PubMed  PubMed Central  Google Scholar 

  34. Keating CD, Kriek N, Daniels M et al (2003) Whole-Genome Analysis of 60 G Protein-Coupled Receptors in Caenorhabditis elegans by Gene Knockout with RNAi. Curr Biol. https://doi.org/10.1016/j.cub.2003.09.003

    Article  PubMed  Google Scholar 

  35. Mertens I, Clinckspoor I, Janssen T et al (2006) FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1. Peptides. https://doi.org/10.1016/j.peptides.2005.11.017

  36. Takahashi K, Hiwada K, Kokubu T (1988) Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension. https://doi.org/10.1161/01.HYP.11.6.620

  37. Michalak M, Groenendyk J, Szabo E et al (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. https://doi.org/10.1042/BJ20081847

    Article  PubMed  Google Scholar 

  38. Yadav S, Gupta S, Saxena JK (2017) Monitoring thermal and chemical unfolding of Brugia malayi calreticulin using fluorescence and Circular Dichroism spectroscopy. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.04.053

    Article  PubMed  Google Scholar 

  39. Yadav S, Gupta S, Selvaraj C et al (2014) In silico and in vitro studies on the protein-protein interactions between Brugia malayi immunomodulatory protein calreticulin and human C1q. PLoS ONE. https://doi.org/10.1371/journal.pone.0106413

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tsuji N, Morales TH, Ozols V et al (1998) Molecular characterization of a calcium-binding protein from the filarial parasite Dirofilaria immitis. Mol Biochem Parasitol. https://doi.org/10.1016/s0166-6851(98)00131-5

    Article  PubMed  Google Scholar 

  41. Rokeach LA, Zimmerman PA, Unnasch2 TR (1994) Epitopes of the Onchocerca volvulus RALl Antigen, a Member of the Calreticulin Family of Proteins, Recognized by Sera from Patients with Onchocerciasis. Infect Immun. https://doi.org/10.1128/iai.62.9.3696-3704.1994

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garg AD, Krysko D, Verfaillie T et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. https://doi.org/10.1038/emboj.2011.497

    Article  PubMed  PubMed Central  Google Scholar 

  43. Martins I, Kepp O, Schlemmer F et al (2011) Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress. Oncogene. https://doi.org/10.1038/onc.2010.500

    Article  PubMed  PubMed Central  Google Scholar 

  44. Panaretakis T, Kepp O, Brockmeier U et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. https://doi.org/10.1038/emboj.2009.1

    Article  PubMed  PubMed Central  Google Scholar 

  45. The Role of Calreticulin in Endoplasmic Reticulum Stress and Apoptosis - Accelerating Proteomics (2022) https://www.thermofisher.com/blog/proteomics/the-role-of-calreticulin-in-endoplasmic-reticulum-stress-and-apoptosis/. Accessed 22

  46. Wang X, Eno CO, Altman BJ et al (2011) ER stress modulates cellular metabolism. Biochem J. https://doi.org/10.1042/BJ20101864

    Article  PubMed  Google Scholar 

  47. Bernal D, de La Rubia JE, Carrasco-Abad AM et al (2004) Identification of enolase as a plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Lett. https://doi.org/10.1016/S0014-5793(04)00306-0

    Article  PubMed  Google Scholar 

  48. Keller A, Peltzer J, Carpentier G et al (2007) Interactions of enolase isoforms with tubulin and microtubules during myogenesis. Biochim Biophys Acta. https://doi.org/10.1016/j.bbagen.2007.01.015

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kumar R, Doharey PK, Saxena JK, Rathaur S (2017) Molecular cloning, purification and characterization of Brugia malayi phosphoglycerate kinase. Protein Expr Purif. https://doi.org/10.1016/j.pep.2017.02.005

    Article  PubMed  Google Scholar 

  50. Chen X, Zhao C, Li X et al (2015) Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat Chem Biol. https://doi.org/10.1038/nchembio.1657

    Article  PubMed  PubMed Central  Google Scholar 

  51. Han J, Miyamae Y, Shigemori H, Isoda H(2010) Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience. https://doi.org/10.1016/j.neuroscience.2010.05.049

  52. Mazzoni C, Torella M, Petrera A et al(2009) PGK1, the gene encoding the glycolitic enzyme phosphoglycerate kinase, acts as a multicopy suppressor of apoptotic phenotypes in S. cerevisiae. Yeast. https://doi.org/10.1002/yea.1647

  53. Zinsser VL, Hoey EM, Trudgett A, Timson DJ(2014) Biochemical characterization of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) from the liver fluke, Fasciola hepatica. Biochim Biophys Acta. https://doi.org/10.1016/j.bbapap.2014.02.008

  54. Hewitson JP, Rückerl D, Harcus Y et al (2014) The Secreted Triose Phosphate Isomerase of Brugia malayi Is Required to Sustain Microfilaria Production In Vivo. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1003930

    Article  PubMed  PubMed Central  Google Scholar 

  55. Anwar N, Ansari AA, Ghatak S, Krishna Murti CR (1977) Setaria cervi: enzymes of glycolysis and PEP-succinate pathway. Z Parasitenkd. https://doi.org/10.1007/BF00384814

    Article  PubMed  Google Scholar 

  56. Street JC, Alfieri AA, Koutcher JA (1997) Quantitation of metabolic and radiobiological effects of 6-aminonicotinamide in RIF-1 tumor cells in vitro. Cancer Res 57:3956–3962

    CAS  PubMed  Google Scholar 

  57. Bhardwaj R, Sharma PK, Jadon SPS, Varshney R (2012) A combination of 2-deoxy-d-glucose and 6-aminonicotinamide induces cell cycle arrest and apoptosis selectively in irradiated human malignant cells. Tumour Biol. https://doi.org/10.1007/s13277-012-0335-1

    Article  PubMed  Google Scholar 

  58. Panayiotou C, Solaroli N, Karlsson A (2014) The many isoforms of human adenylate kinases. Int J Biochem Cell Biol. https://doi.org/10.1016/j.biocel.2014.01.014

    Article  PubMed  Google Scholar 

  59. Jolodar A, Brattig NW (2009) Molecular cloning of adenylate kinase from the human filarial parasite Onchocerca volvulus. Iran J Vet Res. https://doi.org/10.22099/ijvr.2009.1088

    Article  Google Scholar 

  60. Thomas D, Guthridge M, Woodcock J, Lopez A (2005) 14-3-3 protein signaling in development and growth factor responses. Curr Top Dev Biol. https://doi.org/10.1016/S0070-2153(05)67009-3

    Article  PubMed  Google Scholar 

  61. Lillibridge CD, Rudin W, Philipp MT (1996) Dirofilaria immitis:Ultrastructural Localization, Molecular Characterization, and Analysis of the Expression of p27, a Small Heat Shock Protein Homolog of Nematodes. Exp Parasitol. https://doi.org/10.1006/expr.1996.0046

    Article  PubMed  Google Scholar 

  62. Tang DD, Tan J (2003) Downregulation of profilin with antisense oligodeoxynucleotides inhibits force development during stimulation of smooth muscle. Am J Physiol Heart Circ Physiol. https://doi.org/10.1152/ajpheart.00188.2003

    Article  PubMed  Google Scholar 

  63. Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends in Cell Biol. https://doi.org/10.1016/j.tcb.2004.07.003

    Article  Google Scholar 

  64. Zhang SM, Lv ZY, Zhou HJ et al (2008) Characterization of a profilin-like protein from Schistosoma japonicum, a potential new vaccine candidate. Parasitol Res. https://doi.org/10.1007/s00436-008-0919-2

    Article  PubMed  Google Scholar 

  65. Smaili SS, Hsu Y-T, Carvalho ACP et al (2003) Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Braz J Med Biol Res. https://doi.org/10.1590/S0100-879X2003000200004

    Article  PubMed  Google Scholar 

  66. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: The calcium connection. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2010.05.005

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lu P, Lill H, Bald D (2014) ATP synthase in mycobacteria: Special features and implications for a function as drug target. Biochim Biophys Acta. https://doi.org/10.1016/j.bbabio.2014.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  68. Garcia J, Han D, Sancheti H et al (2010) Regulation of mitochondrial glutathione redox status and protein glutathionylation by respiratory substrates. J Biol Chem. https://doi.org/10.1074/jbc.M110.164160

    Article  PubMed  PubMed Central  Google Scholar 

  69. Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: A mutual interplay. Redox Biol. https://doi.org/10.1016/j.redox.2015.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  70. Prasad C, Rupar T, Prasad AN (2011) Pyruvate dehydrogenase deficiency and epilepsy. Brain Dev. https://doi.org/10.1016/j.braindev.2011.08.003

    Article  PubMed  Google Scholar 

  71. Sun W, Liu Q, Leng J et al (2015) The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases. Life Sci. https://doi.org/10.1016/j.lfs.2014.11.030

    Article  PubMed  PubMed Central  Google Scholar 

  72. Middleton KR, Saz HJ (1979) Comparative utilization of pyruvate by Brugia pahangi, Dipetalonema viteae, and Litomosoides carinii. J Parasitol 65:1–7

    Article  CAS  PubMed  Google Scholar 

  73. Cai F, Miao Y, Liu C et al (2018) Pyrroline-5-carboxylate reductase 1 promotes proliferation and inhibits apoptosis in non-small cell lung cancer. Oncol Lett. https://doi.org/10.3892/ol.2017.7400

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mohamed SA, Mohamed TM, Fahmy AS et al (2008) Fasciola gigantica: Enzymes of the ornithine-proline-glutamate pathway-Characterization of ∆1-pyrroline-5-carboxylate dehydrogenase. Exp Parasitol. https://doi.org/10.1016/j.exppara.2007.06.006

    Article  PubMed  Google Scholar 

  75. Käser M, Kambacheld M, Kisters-Woike B, Langer T (2003) Oma1, a Novel Membrane-bound Metallopeptidase in Mitochondria with Activities Overlapping with the m-AAA Protease. J Biol Chem. https://doi.org/10.1074/jbc.M305584200

    Article  PubMed  Google Scholar 

  76. Jiang X, Jiang H, Shen Z, Wang X (2014) Activation of mitochondrial protease OMA1 by bax and bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1417253111

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shimada M, Yokosawa H, Kawahara H (2006) OMA-1 is a P granules-associated protein that is required for germline specification in Caenorhabditis elegans embryos. Genes Cells. https://doi.org/10.1111/j.1365-2443.2006.00945.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the Interdisciplinary School of Life Sciences (ISLS), Banaras Hindu University (BHU) for IEF, MALDI-MS/MS, and fluorescence imager facility. The authors also acknowledge Ms. Ritu Chauhan, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, for preparing KEGG pathway scatter plot using R software.

Funding

This study was supported by Banaras Hindu University (BHU), Varanasi, India, in the form of a UGC research fellowship to MW [R/Dev/IX-Sch (BHU Res. Sch.)/2013-14/65134], FA [R/Dev/IX-Sch (BHU Res. Sch.)/2016-17/15562] and SY [R/Dev/IX-Sch (BHU Res. Sch.)/2015-16/00889].

Author information

Authors and Affiliations

Authors

Contributions

MW performed the experiments, analyzed the data, and drafted the manuscript. FA and SY participated in study implementation, and manuscript revision. SR conceived and designed the study, and critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sushma Rathaur.

Ethics declarations

Declaration of Competing Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadhawan, M., Ahmad, F., Yadav, S. et al. Proteomic Analysis Reveals Differential Protein Expression Induced by Inhibition of Prolyl Oligopeptidase in Filarial Parasites. Protein J 41, 613–624 (2022). https://doi.org/10.1007/s10930-022-10080-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10080-7

Keywords

Navigation