Skip to main content

Advertisement

Log in

Role of ionic liquids on stabilization of therapeutic proteins and model proteins

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) exhibit potential as excipients to stabilize proteins in solutions. This mini-review is not a detailed reference book on ILs, rather a brief overview of the main achievements published in the literature on their effect on protein aggregation, unfolding, structural and thermal stability, and activity. The main focus of the manuscript is three widely studied groups of ionic liquids: imidazolium-, cholinium- and alkylammonium-based and their effect on the model and therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

References

  1. Lodish H, Berk A, Matsudaira P, Kaiser C (2003) Molecular cell biology, 5th edn. W. H. Freeman, New York

    Google Scholar 

  2. Carter PJ (2011) Introduction to current and future protein therapeutics: A protein engineering perspective. Exp Cell Res 317:1261–1269

    Article  CAS  PubMed  Google Scholar 

  3. Almeida H, Amaral MH, Lobão P (2011) Drugs obtained by biotechnology processing. Brazilian J Pharm Sci 47(2). https://doi.org/10.1590/S1984-82502011000200002

  4. Owen JA, Punt J, Stranford SA, Jones PP (2013) Ch. 1 Overview of the immune system in Kuby Immunology, 7th edn. W. H. Freeman and Company, New York, pp 1–25

    Google Scholar 

  5. Bliss M, Canada H (2021) www.thecanadianencyclopedia.ca/en/article/the-discovery-of-insulin. Accessed 13 Dec 2021

  6. de Leiva A, Brugués E, de Leiva-Pérez A (2011) The discovery of insulin: Continued controversies after ninety years. Endocrinol Nutr 58(9):449–456

    PubMed  Google Scholar 

  7. Quianzon CC, Cheikh I (2012) History of insulin. J Community Hosp Intern Med Perspect 2(2):18701

    Article  Google Scholar 

  8. de la Torre BG, Albericio F (2020) The pharmaceutical industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules 25:745. doi:https://doi.org/10.3390/molecules25030745

    Article  CAS  PubMed Central  Google Scholar 

  9. Lagassé HAD, Alexaki A, Simhadri VL et al (2021) Recent advances in (therapeutic protein) drug development [version 1; peer review: 2 approved]. F1000Research 6(F1000 Faculty Rev):113 https://doi.org/10.12688/f1000research.9970.1

  10. Dimitrov DS (2012) In: Voynov V, Caravella JA, Ch. 1 Therapeutic proteins, (Therapeutic Proteins: Methods and Protocols. Methods Mol Biol 899, Springer Science + Business Media, doi: https://doi.org/10.1007/978-1-61779-921-1_1

  11. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    Article  CAS  PubMed  Google Scholar 

  12. Wang W (1999) ) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    Article  CAS  PubMed  Google Scholar 

  13. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS (2010) Stability of protein pharmaceuticals: an update. Pharm Res 27(4):544–575

    Article  PubMed  CAS  Google Scholar 

  14. Wang W (2015) Advanced protein formulations. Prot Sci 24:1031–1039

    Article  CAS  Google Scholar 

  15. Shamshina JL, Zavgorodny O, Rogers RD (2019) Ionic Liquids. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering Encyclopedia of Analytical Science 3rd edn, pp 218–225

  16. Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10:691–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greaves TL, Drummond CJ (2008) Protic ionic liquids: Properties and applications. Chem Rev 108:206–237

    Article  CAS  PubMed  Google Scholar 

  18. Hallett JP, Welton T (2011) Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2 Chem Rev 111:3508–3576

    Article  CAS  PubMed  Google Scholar 

  19. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  20. de Almeida TS, Caparica R, Júlio A, Reis CP (2021) An overview on ionic liquids: A new frontier for nanopharmaceuticals. In: Yata V, Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanopharmaceuticals: Principles and Applications Vol. 1. Environmental Chemistry for a Sustainable World, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-030-44925-4_5

    Chapter  Google Scholar 

  21. Tao G-H, He L, Sun N, Kou Y (2005) New generation ionic liquids: cations derived from amino acids.Chem Commun3562–3564

  22. Hulsbosch J, De Vos DE, Binnemans K, Ameloot R (2016) Biobased ionic liquids: Solvents for a green processing industry? ACS Sustain Chem Eng 4(6):2917–2931

    Article  CAS  Google Scholar 

  23. Hijo AACT, Maximo GJ, Costa MC, Batista EAC, Meirelles AJA (2016) Applications of ionic liquids in the food and bioproducts industries. ACS Sustain Chem Eng 4:5347–5369

    Article  CAS  Google Scholar 

  24. Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117(10):7132–7189

    Article  CAS  PubMed  Google Scholar 

  25. Greer AJ, Jacquemin J, Hardacre C (2020) Industrial applications of ionic liquids. Molecules 25(21):5207

    Article  CAS  PubMed Central  Google Scholar 

  26. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2011) Protein–excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63:1118–1159

    Article  CAS  PubMed  Google Scholar 

  27. Jadhav NR, Bhosale SP, Bhosale SS, Mali SD, Toraskar PB, Kadam TS (2021) Ionic liquids: Formulation avenues, drug delivery and therapeutic updates. J Drug Deliv Sci Technol 65:102694

    Article  CAS  Google Scholar 

  28. Sidat Z, Marimuthu T, Kumar P, du Toit LC, Kondiah PPD, Choonara YE, Pillay V (2019) Ionic liquids as potential and synergistic permeation enhancers for transdermal drug delivery. Pharmaceutics11(2): 96

  29. Lin X, Su Z, Yang Y, Zhang S (2021) The potential of ionic liquids in biopharmaceutical engineering. Chin J Chem Eng 30:236–243

    Article  CAS  Google Scholar 

  30. Roberts CJ (2014) Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol 32(7):372–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell148(6):1188–1203

  32. de Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34(8):408–416

    Article  PubMed  CAS  Google Scholar 

  33. Vázquez-Rey M, Lang DA (2011) Aggregates in monoclonal antibody manufacturing processes. Biotehnol Bioeng 108(7):1494–1508

    Article  CAS  Google Scholar 

  34. Roberts CJ (2014) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 30:211–217

    Article  CAS  PubMed  Google Scholar 

  35. Brader ML (2014) In: Monitoring polymerization reactions: From fundamentals to applications Reed WF, Alb AM (eds.) Ch 20 Protein aggregation in pharmaceutical biotechnology. 1st edn., John Wiley & Sons, Inc., pp 395–408

  36. Debeljuh N, Barrow CJ, Byrne N (2011) The impact of ionic liquids on amyloid fibrilization of Ab16-22: tuning the rate of fibrilization using a reverse Hofmeister strategy. Phys Chem Chem Phys 13:16534–16536

    Article  CAS  PubMed  Google Scholar 

  37. Debeljuh N, Barrow CJ, Henderson L, Byrne N (2011) Structure inducing ionic liquids—enhancement of alpha helicity in the Abeta(1–40) peptide from Alzheimer’s disease. Chem Commun 47:6371–6373

    Article  CAS  Google Scholar 

  38. Debeljuh N, Varghese S, Barrow CJ, Byrne N (2012) Role of cation in enhancing the conversion of the Alzheimer’s peptide into amyloid fibrils using protic ionic liquids. Aust J Chem 65:1502–1506

    Article  CAS  Google Scholar 

  39. Byrne N, Angell CA (2009) Formation and dissolution of hen egg white lysozyme amyloid fibrils in protic ionic liquids.Chem Commun1046–1048

  40. Takekiyo T, Yamada N, Nakazawa CT, Amo T, Asano A, Yoshimura Y (2020) Formation of α-synuclein aggregates in aqueous ethylammonium nitrate solutions. Biopolymers e23352

  41. Bae SY, Kim S, Hwang H, Kim H-K, Yoon HC, Kim JH, Lee BY, Kim TD (2010) Amyloid formation and disaggregation of α-synuclein and its tandem repeat (α-TR). Biochem Biophys Res Commum 490:531–536

    Article  CAS  Google Scholar 

  42. Bae SY, Kim S, Lee BY, Kim KK, Kim TD (2011) Amyloid formation using 1-butyl-3-methylimidazolium-based ionic liquids. Anal Biochem 419:354–356

    Article  CAS  PubMed  Google Scholar 

  43. Hwang H, Choi H, Kim H-K, Jo DH, Kim TD (2009) Ionic liquids promote amyloid formation from α-synuclein. Anal Biochem 386:293–295

    Article  CAS  PubMed  Google Scholar 

  44. Takekiyo T, Yamaguchi E, Abe H, Yoshimura Y (2016) Suppression effect on the formation of insulin amyloid by the use of ionic liquid. ACS Sustain Chem Eng 4:422–428

    Article  CAS  Google Scholar 

  45. Takekiyo T, Yamaguchi E, Yoshida K, Kato M, Yamaguchi T, Yoshimura Y (2015) Interaction site between the protein aggregates and thiocyanate ion in aqueous solution: a case study of 1–butyl-3-methylimidazolium thiocyanate. J Phys Chem B 119:6536–6544

    Article  CAS  PubMed  Google Scholar 

  46. Takekiyo T, Yamada N, Amo T, Yoshimura Y (2019) Aggregation selectivity of amyloid β1–11 peptide in aqueous ionic liquid solutions. Peptide Sci e24138

  47. Takekiyo T, Yoshimura Y (2018) Suppression and dissolution of amyloid aggregates using ionic liquids. Biophys Rev 10(3):853–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pillai VVS, Benedetto A (2018) Ionic liquids in protein amyloidogenesis: a brief screenshot of the state-of-the-art. Biophys Rev 10:847–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalhor HR, Kamizi M, Akbari J, Heydari A (2009) Inhibition of amyloid formation by ionic liquids: Ionic liquids affecting intermediate oligomers. Biomacromolecules 10:2468–2475

    Article  CAS  PubMed  Google Scholar 

  50. Takekiyo T, Koyama Y, Yamazaki K, Abe H, Yoshimura Y (2013) Ionic liquid-induced formation of the α–helical structure of β–lactoglobulin. J Phys Chem B 117:10142–10148

    Article  CAS  PubMed  Google Scholar 

  51. Bhatwa A, Wang W, Hassan YI, Abraham N, Li X-Z, Zhou T (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9:630551

    Article  PubMed  PubMed Central  Google Scholar 

  52. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Factories 14:41

    Article  CAS  Google Scholar 

  53. Yamaguchi H, Miyazaki M (2014) Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4:235–251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kumar A, Bisht M, Jha I, Venkatesu P (2017) The role of ionic liquids in protein folding/unfolding studies, Progress and developments in ionic Liquids. Scott Handy, IntechOpen

    Google Scholar 

  55. Fujita K (2018) Ionic Liquids as Stabilization and Refolding Additives and Solvents for Proteins. In: Itoh T, Koo YM (eds) Application of Ionic Liquids in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 168. Springer, Cham

    Google Scholar 

  56. Yamamoto E, Yamaguchi S, Nagamune T (2011) Protein refolding by N-alkylpyridinium and N-alkyl-N-methylpyrrolidinium ionic liquids. Appl Biochem Biotechnol 164(6):957–967

    Article  CAS  PubMed  Google Scholar 

  57. Kumar A, Bhakuni K, Venkatesu P (2019) Strategic planning of proteins in ionic liquids: future solvents for the enhanced stability of proteins against multiple stresses. Phys Chem Chem Phys 21:23269

    Article  CAS  PubMed  Google Scholar 

  58. Mann JP, McCluskey A, Atkin R (2009) Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—influence of cation modification. Green Chem 11:785–792

    Article  CAS  Google Scholar 

  59. Takekiyo T, Miyazaki K, Watanabe Y, Uesugi Y, Tanaka S, Ishikawa Y, Yoshimura Y (2019) Solubilization and recovery of heat-aggregated cytochrome c using alkylammonium nitrate. J Mol Liq 291:111239

    Article  CAS  Google Scholar 

  60. Mangialardo S, Gontrani L, Leonelli F, Caminiti R, Postorino P (2012) Role of ionic liquids in protein refolding: native/fibrillar versus treated lysozyme. RSC Adv 2:12329–12336

    Article  CAS  Google Scholar 

  61. Byrne N, Wang L-M, Belieres J-PC, Angell A (2007) Reversible folding–unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids.Chem Commun2714–2716

  62. Summers C, Flowers IIR (2000) Protein renaturation by the liquid organic salt ethylammonium nitrate. Prot Sci 9:2001–2008

    Article  CAS  Google Scholar 

  63. Fujita K, Nakano R, Nakaba R, Nakamura N, Ohno H (2019) Hydrated ionic liquids enable both solubilisation and refolding of aggregated Concanavaline A. Chem Commun 55:3578–3581

    Article  CAS  Google Scholar 

  64. Attri P, Venkatesu P, Kumar A (2011) Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Phys Chem Chem Phys 13:2788–2796

    Article  CAS  PubMed  Google Scholar 

  65. Lange C, Patil G, Rudolph R (2005) Ionic liquids as refolding additives: N′-alkyl and N′-(ω-hydroxyalkyl) N-methylimidazolium chlorides. Prot Sci 14(10):2693–2701

    Article  CAS  Google Scholar 

  66. Meng Z, Zheng X, Tang K, Liu J, Ma Z, Zhao Q (2012) Dissolution and regeneration of collagen fibers using ionic liquid. Int J Biol Macromol 51:440–448

    Article  CAS  PubMed  Google Scholar 

  67. Tischer A, Pultke H, Topf A, Auton M, Lange C, Lilie H (2014) The effects of N-ethyl-N0-methyl imidazolium chloride on the solubility, stability and aggregation of tc-rPA. FEBS J 281:1738–1749

    Article  CAS  PubMed  Google Scholar 

  68. Yu Y, Wang J, Shao Q, Shi J, Zhu W (2016) The effects of organic solvents on the folding pathway and associated thermodynamics of proteins: a microscopic view. Sci Rep 6:19500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Singh UK, Patel R (2018) Dynamics of ionic liquid-assisted refolding of denatured cytochrome c: a study of preferential interactions toward renaturation. Mol Pharm 15(7):2684–2697

    Article  CAS  PubMed  Google Scholar 

  70. Sindhu A, Bhakuni K, Sankaranarayanan K, Venkatesu P (2020) Implications of imidazolium based ionic liquids as refolding additives for urea-induced denatured serum albumins. ACS Sustain Chem Eng 8(1):604–612

    Article  CAS  Google Scholar 

  71. Singh UK, Kumari M, Wani FA, Parray M, Saraswat J, Venkatesu P, Patel R (2019) Refolding of acid denatured cytochrome c by anionic surface-active ionic liquid: Choice of anion plays key role in refolding of proteins. Colloids Surf A 582:123872

    Article  CAS  Google Scholar 

  72. Bae S-W, Chang W-J, Koo Y-M, Ha SH (2012) Enhanced refolding of lysozyme with imidazolium-based room temperature ionic liquids: Effect of hydrophobicity and sulfur residue. Sci China Chem 55(8):1657–1662

    Article  CAS  Google Scholar 

  73. Fujita K, Kajiyama M, Liu Y, Nakamura N, Ohno H (2016) Hydrated ionic liquids as a liquid chaperon for refolding of aggregated recombinant protein expressed in Escherichia coli. Chem Commun 52:13491–13494

    Article  CAS  Google Scholar 

  74. Reslan M, Kayser V (2018) Ionic liquids as biocompatible stabilizers of proteins. Biophys Rev 10(3):781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zaidi S, Haque Md A, Ubaid-ullah S, Prakash A, Hassan Md I, Islam A, Batra JK, Ahmad F (2017) Denatured states of yeast cytochrome c induced by heat and guanidinium chloride are structurally and thermodynamically different. J Biomol Str Dyn 35(7):1420–1435

    Article  CAS  Google Scholar 

  76. Buchfink R, Tischer A, Patil G, Rudolph R, Lange C (2010) Ionic liquids as refolding additives: Variation of the anion. J Biotechnol 150:64–72

    Article  CAS  PubMed  Google Scholar 

  77. Byrne N, Barrow C, Macckuskey A (2013) Solvent induced changes in the conformational state of β-lactoglobuln and the influence of protic ionic liquids. J Mol Eng Mat 1(1):1250004

    Article  CAS  Google Scholar 

  78. Weaver KD, Vrikkis RM, Van Vorst MP, Trullinger J, Vijayaraghavan R, Foureau DM, McKillop IH, MacFarlane DR, Krueger JK, Elliott GD (2012) Structure and function of proteins in hydrated choline dihydrogen phosphate ionic liquid. Phys Chem Chem Phys 14:790–801

    Article  CAS  PubMed  Google Scholar 

  79. Foureau DM, Vrikkis RM, Jones CP, Weaver KD, MacFarlane DR, Salo JC, McKillop IH, Elloitt GD (2012) In vitro assessment of choline dihydrogen phosphate (CDHP) as a vehicle for recombinant human interleukin-2 (rhIL-2). Cell Mol Bioeng 5(4):390–401

    Article  CAS  PubMed  Google Scholar 

  80. Fujita K, MacFarlane DR, Forsyth M, Yoshizawa-Fujita M, Murata K, Nakamura N, Ohno H (2007) Solubility and stability of cytochrome c in hydrated ionic liquids: Effect of oxo acid residues and kosmotropicity. Biomacromolecules 8:2080–2086

    Article  CAS  PubMed  Google Scholar 

  81. Reslan M, Ranganathan V, MacFarlane DR, Kayser V (2018) Choline ionic liquid enhances the stability of Herceptins (trastuzumab). Chem Commun 54:10622–10625

    Article  CAS  Google Scholar 

  82. Sindhu A, Mogha NK, Venkatesu P (2019) Insight into impact of choline-based ionic liquids on bovine β-lactoglobulin structural analysis: Unexpected high thermal stability of protein. Int J Biol Macromol 126:1–10

    Article  CAS  PubMed  Google Scholar 

  83. Sahoo DK, Tulsiyan KD, Jena S, Biswal HS (2020) Implication of threonine-based ionic liquids on the structural stability, binding and activity of cytochrome C. ChemPhysChem 21(23):2525–2535

    Article  CAS  Google Scholar 

  84. Lin X, Yang Y, Li S, Song Y, Ma G, Su Z, Zhang S (2019) Unique stabilizing mechanism provided by biocompatible choline-based ionic liquids for inhibiting dissociation of inactivated foot-and mouth disease virus particles. RSC Adv 9:13933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Singh O, Lee P-Y, Matysiak S, Bermudez H (2020) Dual mechanism of ionic liquid-induced protein unfolding. Phys Chem Chem Phys 22:19779–19786

    Article  PubMed  Google Scholar 

  86. Kumar A, Venkatesu P (2014) A comparative study of myoglobin stability in the presence of Hofmeister anions of ionic liquids and ionic salts. Proc Biochem 49:2158–2169

    Article  CAS  Google Scholar 

  87. Kumar A, Venkatesu P (2014) The stability of insulin in the presence of short alkyl chain imidazolium-based ionic liquids. RSC Adv 4:4487–4499

    Article  CAS  Google Scholar 

  88. Figueiredo AM, Sardinha J, Moore GR, Cabrita EJ (2013) Protein destabilisation in ionic liquids: the role of preferential interactions in denaturation. Phys Chem Chem Phys 15:19632–19643

    Article  CAS  PubMed  Google Scholar 

  89. Garajová K, Sedláková D, Berta M, Gazova Z, Sedlák E (2020) Destabilization effect of imidazolium cation-Hofmeister anion salts on cytochrome c. Int J Biol Macromol 164:3808–3813

    Article  PubMed  CAS  Google Scholar 

  90. Kumari M, Singh UK, Beg I, Alanazi AM, Khan AA, Patel R (2018) Effect of cations and anions of ionic liquids on the stability and activity of lysozyme: Concentration and temperature effect. J Mol Liq 272:253–263

    Article  CAS  Google Scholar 

  91. Wit JNDe, Swinkels GAM (1980) A differential scanning calorimetric study of the thermal denaturation of bovine β-lactoglobulin. Thermal behaviour at temperatures up to 100°C. Biochim Biophys Acta (BBA) - Prot Str 624(1):40–50

    Google Scholar 

  92. Yoshida K, Zenin T, Fujiyoshi A, Sanada Y, Yamaguchi T, Murata K, Takata S, Hiroi K, Takekiyo T, Yoshimura Y (2019) The effect of alkyl ammonium ionic liquids on thermal denaturation aggregation of β-lactoglobulin. J Mol Liq 293:111477

    Article  CAS  Google Scholar 

  93. Takekiyo T, Yamada N, Amo T, Yoshimura Y (2020) Effects of ethylammonium halides on helix formation of proteins. Chem Phys Lett 759:137970

    Article  CAS  Google Scholar 

  94. Takekiyo T, Yoshida K, Funahashi Y, Nagata S, Abe H, Yamaguchi T, Yoshimura Y (2017) Helix-forming ability of proteins in alkylammonium nitrate. J Mol Liq 243:584–590

    Article  CAS  Google Scholar 

  95. Byrne N, Rodoni B, Constable F, Varghese S, Davis JH Jr (2012) Enhanced stabilization of the Tobacco mosaic virus using protic ionic liquids. Phys Chem Chem Phys 14:10119–10121

    Article  CAS  PubMed  Google Scholar 

  96. Takekiyo T, Yamazaki K, Yamaguchi E, Abe H, Yoshimura Y (2012) High ionic liquid concentration-induced structural change of protein in aqueous solution: A case study of lysozyme. J Phys Chem B 116:11092–11097

    Article  CAS  PubMed  Google Scholar 

  97. Singh G, Kang TS (2015) Ionic liquid surfactant mediated structural transitions and self-assembly of bovine serum albumin in aqueous media: Effect of functionalization of ionic liquid surfactants. J Phys Chem B 119(33):10573–10585

    Article  CAS  PubMed  Google Scholar 

  98. Mazid RR, Vijayaraghavan R, MacFarlane DR, Cortez-Jugo C, Cheng W (2015) Inhibited fragmentation of mAbs in buffered ionic liquids. Chem Commun 51:8089–8092

    Article  CAS  Google Scholar 

  99. Fujita K, Forsyth M, MacFarlane DR, Reid RW, Elliott GD (2006) Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnol Bioeng 94(6):1209–1213

    Article  CAS  PubMed  Google Scholar 

  100. Takekiyo T, Ishikawa Y, Yoshimura Y (2017) Cryopreservation of proteins using ionic liquids: A case study of cytochrome c. J Phys Chem B 121(32):7614–7620

    Article  CAS  PubMed  Google Scholar 

  101. Ishikawa Y, Takekiyo T, Yoshimura Y (2018) Recovery and cryopreservation of insulin amyloid using ionic liquids. J Mol Liq 272:1019–1024

    Article  CAS  Google Scholar 

  102. Yoshimura Y, Takekiyo T, Mori T (2016) Structural study of lysozyme in two ionic liquids at cryogenic temperature. Chem Phys Lett 664:44–49

    Article  CAS  Google Scholar 

  103. Byrne N, Angell CA (2008) Protein unfolding, and the “tuning in” of reversible intermediate states, in protic ionic liquid media. J Mol Biol 378:707–714

    Article  CAS  PubMed  Google Scholar 

  104. Takekiyo T, Fukudome K, Yamazaki K, Abe H, Yoshimura Y (2014) Protein aggregation and partial globular state in aqueous 1-alkyl-3-methylimidazolium nitrate solutions. Chem Phys Lett 602:22–27

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Guncheva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guncheva, M. Role of ionic liquids on stabilization of therapeutic proteins and model proteins. Protein J 41, 369–380 (2022). https://doi.org/10.1007/s10930-022-10058-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10058-5

Keywords

Navigation