Skip to main content

Advertisement

Log in

Estrogen Sulfotransferase is Highly Expressed in Vascular Endothelial Cells Overlying Atherosclerotic Plaques

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cytosolic estrogen sulfotransferase (SULT1E1) mainly catalyzes the sulfoconjugation and deactivation of estrogens that are known to exert potent anti-atherogenic effects. However, it remains unknown about the connection between SULT1E1 and atherosclerosis. Recently, we reported that SULT1E1 is highly expressed in the aorta with plaques of high fat-fed ApoE knockout (KO) mice (mouse model of atherosclerosis), and interacts with oxidized low-density lipoprotein (Ox-LDL) known as a major component of atherosclerotic lesions. In this study, immunohistochemical staining for SULT1E1 in the aorta of high fat-fed ApoE KO mice showed that SULT1E1 is detected in vascular endothelial cells overlying atherosclerotic plaques. Results from Western blotting showed that Ox-LDL induces the protein expression of both SULT1E1 and peroxisome proliferator-activated receptor (PPAR) γ in human umbilical vein endothelial cells (HUVECs), and then that a PPARγ antagonist GW9662, but not a PPARα antagonist GW6471, inhibited the protein expression of SULT1E1 induced by Ox-LDL. Moreover, GW9662 significantly increased the proliferation of HUVECs induced by Ox-LDL. Our results suggest that SULT1E1 and PPARγ, both of which are increased by Ox-LDL, may interact with each other, and then may reduce cooperatively Ox-LDL-induced proliferation of vascular endothelial cells overlying atherosclerotic plaques, leading to against atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Glass CK, Witztum JL (2001) Atherosclerosis: the road ahead. Cell 104:503–516. https://doi.org/10.1016/S0092-8674(01)00238-0

    Article  CAS  PubMed  Google Scholar 

  2. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 47:317–325. https://doi.org/10.1038/nature10146

    Article  CAS  Google Scholar 

  3. Ross R (1999) Mechanism of disease: atherosclerosis—an inflammatory disease. N Engl Med 340:115–126. https://doi.org/10.1056/NEJM199901143400207

    Article  CAS  Google Scholar 

  4. Sternberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924. https://doi.org/10.1056/NEJM198904063201407

    Article  Google Scholar 

  5. Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140. https://doi.org/10.1161/01.cir.83.6.2137

    Article  CAS  PubMed  Google Scholar 

  6. Witztum JL (1993) Role of oxidised low-density lipoprotein in atherogenesis. Br Heart J 69:S12–S18. https://doi.org/10.1136/hrt.69.1_suppl.s12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654. https://doi.org/10.1161/01.atv.0000033829.14012.18

    Article  CAS  PubMed  Google Scholar 

  8. Sigala F, Kotsinas A, Savari P, Fillis K, Markantonis S, Iliodromitis EK, Gorgoulis VG, Andreadou I (2010) Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J Vasc Surg 52:704–713. https://doi.org/10.1016/j.jvs.2010.03.047

    Article  PubMed  Google Scholar 

  9. Falany C (1997) Enzymology of human cytosolic sulfotransferase. FASEB J 11:206–216. https://doi.org/10.1096/fasebj.11.4.9068609

    Article  CAS  PubMed  Google Scholar 

  10. Nagata K, Yamazoe Y (2000) Pharmacogenetics of sulfotransferase. Annu Rev Pharmacol Toxicol 40:159–176. https://doi.org/10.1146/annurev.pharmtox.40.1.159

    Article  CAS  PubMed  Google Scholar 

  11. Lindsay J, Wang LL, Li Y, Zhou SF (2008) Structure, function and polymorphism of human cytosolic sulfotransferases. Curr Drug Metab 9:99–105. https://doi.org/10.2174/138920008783571819

    Article  CAS  PubMed  Google Scholar 

  12. Alnouti Y, Klaassen CD (2006) Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicol Sci 93:242–255. https://doi.org/10.1093/toxsci/kfl050

    Article  CAS  PubMed  Google Scholar 

  13. Miki Y, Nakata T, Suzuki T, Darnel AD, Moriya T, Kaneko C, Hidaka K, Shiotsu Y, Kusaka H, Sasano H (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 87:5760–5768. https://doi.org/10.1210/jc.2002-020670

    Article  CAS  PubMed  Google Scholar 

  14. Song WC (2001) Biochemistry and reproductive endocrinology of estrogen sulfotransferase. Ann N Y Acad Sci 948:43–50. https://doi.org/10.1111/j.1749-6632.2001.tb03985.x

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Varmalova O, Vargas FM, Falany CN, Leyh TS (1998) Surfuryl transfer: the catalytic mechanism of human estrogen sulfotransferase. J Biol Chem 273:10888–10892. https://doi.org/10.1074/jbc.273.18.10888

    Article  CAS  PubMed  Google Scholar 

  16. Sato A, Yamazaki M, Watanabe H, Sakurai E, Ebina K (2020) Human estrogen sulfotransferase and its related fluorescently labeled decapeptides specifically interact with oxidized low-density lipoprotein. J Pept Sci 26:e3274. https://doi.org/10.1002/psc.3274

    Article  CAS  PubMed  Google Scholar 

  17. Sato A, Watanabe H, Yamazaki M, Sakurai E, Ebina K (2021) Interaction of native- and oxidized-low-density lipoprotein with human estrogen sulfotransferase. Protein J 40:1–13. https://doi.org/10.1007/s10930-021-09971-y

    Article  CAS  Google Scholar 

  18. Nakamura Y, Miki Y, Suzuki T, Nakata T, Darnel D, Moriya T, Tazawa C, Saito H, Ishibashi T, Takahashi S, Yamada S, Sasano H (2003) Steroid sulfatase and estrogen sulfotransferase in the atherosclerotic human aorta. Am J Pathol 163:1329–1339. https://doi.org/10.1016/S0002-9440(10)63492-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li Y, Xu Y, Li X, Qin Y, Hu R (2013) Effects of PPAR-α agonist and IGF-1 on estrogen sulfotransferase in human vascular endothelial and smooth muscle cells. Mol Med Rep 8:133–139. https://doi.org/10.3892/mmr.2013.1483

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Yang X, Wang Z, Li M, Ning Y, Chen S, Yin L, Li X (2013) Estrogen sulfotransferase (SULT1E1) regulates inflammatory response and lipid metabolism of human endothelial cells via PPARγ. Mol Cell Endocrinol 369:140–149. https://doi.org/10.1016/j.mce.2013.01.020

    Article  CAS  PubMed  Google Scholar 

  21. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Investig 34:1345–1353. https://doi.org/10.1172/JCI103182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  23. Aboud OA, Wettersten HI, Weiss RH (2013) Inhibition of PPARα induces cell cycle arrest and apoptosis, and synergizes with glycolysis inhibition in kidneys cancer cells. PLoS ONE 8:e71115. https://doi.org/10.1371/journal.pone.0071115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, McKee DD, Galardi CM, Plunket KD, Nolte RT, Parks DJ, Moore JT, Kliewer SA, Willson TM, Stimmel JB (2002) Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARalpha. Nature 415:813–817. https://doi.org/10.1038/415813a

    Article  CAS  PubMed  Google Scholar 

  25. Leesnitzer LM, Parks DJ, Bledsoe RK, Cobb JE, Collins JL, Consler TG, Davis RG, Hull-Ryde EA, Lenhard JM, Patel L, Plunket KD, Shenk JL, Stimmel JB, Therapontos C, Willson TM, Blanchard SG (2002) Functional consequences of cysteine modification in the ligand binding sites of peroxisome proliferator activated receptors by GW9662. Biochemistry 41:6640–6650. https://doi.org/10.1021/bi0159581

    Article  CAS  PubMed  Google Scholar 

  26. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85. https://doi.org/10.1016/0003-2697(85)90442-7

    Article  CAS  PubMed  Google Scholar 

  27. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  28. Hamblin M, Chang L, Fan Y, Zhang J, Chen YE (2009) PPARs and the cardiovasucular system. Antioxid Redox Signal 11:1415–1452. https://doi.org/10.1089/ars.2008.2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Lin X, Xu J, Jing H, Qin Y, Li Y (2018) SULT1E1 inhibits cell proliferation and invasion by activating PPARγ in breast cancer. J Cancer 9:1078–1087. https://doi.org/10.7150/jca.23596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barbosa ACS, Feng Y, Yu C, Huang M, Xie W (2019) Estrogen sulfotransfertase in the metabolism of estrogenic drugs and in the pathogenesis of diseases. Expert Opin Drug Metab Toxicol 15:329–339. https://doi.org/10.1080/17425255.2019.1588884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mercer KE, Apostolov EO, Gamboa DCG, Yu X, Lang P, Roberts DW, Davis W, Basnakian AG, Kadlubar FF, Kadlubar SA (2010) Expression of sulfotransferase isoform 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis. Int J Mol Epidemiol Genet 1:92–103

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pasqualini JR (2009) Estrogen sulfotransferases in breast and endometrial cancers. Ann N Y Acad Sci 1155:88–98. https://doi.org/10.1111/j.1749-6632.2009.04113.x

    Article  CAS  PubMed  Google Scholar 

  33. Khor VK, Dhir R, Yin X, Ahima RS, Song WC (2010) Estrogen sulfotransferase regulates body fat and glucose homeostasis. Am J Physiol Endocrinol Metab 299:E657–E664. https://doi.org/10.1152/ajpendo.00707.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wada T, Ihunnah CA, Gao J, Chai X, Zeng S, Philips BJ, Rubin JP, Marra KG, Xie W (2011) Estrogen sulfotransferase inhibits adipocyte differentiation. Mol Endocrinol 25:1612–1623. https://doi.org/10.1210/me.2011-1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung U, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Investig 113:846–855. https://doi.org/10.1172/JCI19900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reddy AT, Lakshmi SP, Reddy RC (2016) PPARγ as a novel therapeutic target in lung cancer. PPAR Res 2016:8972570. https://doi.org/10.1155/2016/8972570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang G, Cao R, Quan G, Dan HC, Jiang W, Ju L, Wu M, Xiao Y, Wang X (2016) Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Sci Rep 6:35783. https://doi.org/10.1038/srep35783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonofiglio D, Gabriele S, Aquila S, Qi H, Belmonte M, Catalano S, Andò S (2009) Peroxisome proliferator-activated receptor gamma activates fas ligand gene promoter inducing apoptosis in human breast cancer cells. Breast Cancer Res Treat 113:423–434. https://doi.org/10.1007/s10549-008-9944-1

    Article  CAS  PubMed  Google Scholar 

  39. Catalano S, Mauro L, Bonofiglio D, Pellegrino M, Qi H, Rizza P, Vizza D, Bossi G, Andò S (2011) In vivo and in vitro evidence that PPARγ ligands are antagonists of leptin signaling in breast cancer. Am J Pathol 179:1030–1040. https://doi.org/10.1016/j.ajpath.2011.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zheng J, Lu C (2020) Oxidized LDL causes endothelial apoptosis by inhibiting mitochondria autophagy. Front Cell Dev Biol 8:600950. https://doi.org/10.3389/fcell.2020.600950

    Article  PubMed  PubMed Central  Google Scholar 

  41. Galle J, Heinloth A, Wanner C, Heermeier K (2001) Dual effect of oxidized LDL on cell cycle in human endothelial cells through oxidative stress. Kidney Int Suppl 78:S120-123. https://doi.org/10.1046/j.1523-1755.2001.59780120.x

    Article  CAS  PubMed  Google Scholar 

  42. Delimaris I, Faviou E, Antonakos G, Stathopoulou E, Zachari A, Dionyssiou-Asteriou A (2007) Oxidized LDL, serum oxidizability and serum lipid levels in patients with breast or ovarian cancer. Clin Biochem 40:1129–1134. https://doi.org/10.1016/j.clinbiochem.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  43. Nakhjavani M, Khalilzadeh O, Khajeali L, Esteghamati A, Morteza A, Jamali A, Dadkhahipour S (2010) Serum oxidized-LDL is associated with diabetes duration independent of maintaining optimized levels of LDL-cholesterol. Lipids 45:321–327. https://doi.org/10.1007/s11745-010-3401-8

    Article  CAS  PubMed  Google Scholar 

  44. Prescott SM, Zimmerman GA, McIntyre TM (1990) Platelet-activating factor. J Biol Chem 265:17381–17384

    Article  CAS  PubMed  Google Scholar 

  45. Shindou H, Shimizu T (2009) Acyl-CoA: Lysophospholipid acyltransferases. J Biol Chem 284:1–5. https://doi.org/10.1074/jbc.R800046200

    Article  CAS  PubMed  Google Scholar 

  46. Nigam S, Benedetto SM (1989) Elevated plasma levels of platelet-activating factor (PAF) in breast cancer patients with hypercalcemia. J Lipid Mediat 1:323–328

    CAS  PubMed  Google Scholar 

  47. Ayala A, Chaudry IH (1996) Platelet activating factor and its role in trauma, shock, and sepsis. New Horiz 4:265–275

    CAS  PubMed  Google Scholar 

  48. Fang X, Gaudette D, Furui T, Mao M, Estrella V, Eder A, Pustilnik T, Sasagawa T, Lapushin R, Yu S, Jaffe RB, Wiener JR, Erickson JR, Mills GB (2000) Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci 905:188–208. https://doi.org/10.1111/j.1749-6632.2000.tb06550.x

    Article  CAS  PubMed  Google Scholar 

  49. Runge-Morris M, Kocarek TA, Falany CN (2013) Regulation of the cytosolic sulfotransferases by nuclear receptors. Drug Metab Rev 45:15–33. https://doi.org/10.3109/03602532.2012.748794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-profit sectors. We thank Tokushima Molecular Pathology Institute, Inc (Tokushima, Japan) for forming tissue slice by microtome. We thank Editage by Cactas Communications Inc. (Tokyo, Japan) for providing assistance with the English language.

Author information

Authors and Affiliations

Authors

Contributions

AS, ES, and KE conceived and designed the experiments. AS, HW, and MY performed the experiments and analyzed the data. AS wrote the paper.

Corresponding author

Correspondence to Akira Sato.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Watanabe, H., Yamazaki, M. et al. Estrogen Sulfotransferase is Highly Expressed in Vascular Endothelial Cells Overlying Atherosclerotic Plaques. Protein J 41, 179–188 (2022). https://doi.org/10.1007/s10930-022-10042-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-022-10042-z

Keywords

Navigation