Skip to main content

Advertisement

Log in

16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Tuberculosis (TB) is an airborne infectious disease caused by Mycobacterium tuberculosis (M.tb) whose natural history traces back to 70,000 years. TB remains a major global health burden. Methylation is a type of post-replication, post-transcriptional and post-translational epi-genetic modification involved in transcription, translation, replication, tissue specific expression, embryonic development, genomic imprinting, genome stability and chromatin structure, protein protein interactions and signal transduction indicating its indispensable role in survival of a pathogen like M.tb. The pathogens use this epigenetic mechanism to develop resistance against certain drug molecules and survive the lethality. Drug resistance has become a major challenge to tackle and also a major concern raised by WHO. Methyltransferases are enzymes that catalyze the methylation of various substrates. None of the current TB targets belong to methyltransferases which provides therapeutic opportunities to develop novel drugs through studying methyltransferases as potential novel targets against TB. Targeting 16S rRNA methyltransferases serves two purposes simultaneously: a) translation inhibition and b) simultaneous elimination of the ability to methylate its substrates hence stopping the emergence of drug resistance strains. There are ~ 40 different rRNA methyltransferases and 13 different 16S rRNA specific methyltransferases which are unexplored and provide a huge opportunity for treatment of TB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

SAM:

S-adenosyl-L-methionine

ATP:

Adenosine triphosphate

BRENDA:

A comprehensive enzyme information system

EC:

Enzyme Commission

DMTs:

DNA Methyltransferases

CpG dinucleotides:

Cytosine-phosphate-guanine sites

Dam:

DNA adenine Methyltransferase

MDR:

Multi-drug-resistant

XDR:

Extensively-drug-resistant

PTC:

Peptidyl transferase center

DC:

Decoding center

PET:

Peptide exit tunnel

PDB:

Protein data bank

Dcm:

DNA cytosine Methyltransferase

PMTs:

Protein Methyltransferases

PRMTs:

Protein arginine methyltransferases

PKMTs:

Protein lysine(K) Methyl Transferases

NTMTs:

N-Terminal Methyl Transferases

CTMTs:

Carboxy Terminal Methyl Transferases

SET:

Su(var)3-9, Enhancer-of-zeste and Trithorax

RMTs:

RNA Methyltransferases

tRNA:

Transfer RNA

mRNA:

Messenger RNA

rRNA:

Ribosomal RNA

tmRNA:

Transfer-messenger RNA

snRNA:

Small nuclear RNA

snoRNA:

Small nucleolar RNA

SCOP:

Structural Classification of Proteins

CATH:

Class Architecture Topology Homologous superfamily

CASTp 3.0:

Computed atlas of surface topography of proteins

rRMTs:

rRNA Methyltransferases

16srRMT:

16S rRNA Methyltransferases

Rsm[A,B,C,D,E,F,G,H,I,J]:

Ribosomal RNA small subunit methyltransferase[A,B,C,D,E,F,G,H,I,J]

SSU:

Small ribosomal subunit

LSU:

Large ribosomal subunit

M.tb :

Mycobacterium tuberculosis

Tth:

Thermus thermophilus

Eco:

Escherichia coli

References

  1. Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B et al (2017) What we know about tuberculosis transmission: an overview. J Infect Dis 216:S629–S635

  2. Witek MA, Kuiper EG, Minten E, Crispell EK, Conn GL (2017) A novel motif for S-Adenosyl-l-methionine binding by the ribosomal RNA Methyltransferase TlyA from Mycobacterium tuberculosis. J Biol Chem. https://doi.org/10.1074/jbc.m116.752659

    Article  PubMed  Google Scholar 

  3. Osterman IA, Dontsova OA, Sergiev PV (2020) rRNA methylation and antibiotic resistance. Biochemistry 85:1335–1349

    CAS  PubMed  Google Scholar 

  4. Sergiev PV, Aleksashin NA, Chugunova AA, Polikanov YS, Dontsova OA (2018) Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol 14:226–235

    CAS  PubMed  Google Scholar 

  5. WHO | The End TB Strategy. 2018 [cited 24 Aug 2019]. Available: http://www.who.int/tb/strategy/en/.

  6. Pipeline | Working Group for New TB Drugs. [cited 17 Nov 2019]. Available: https://www.newtbdrugs.org/pipeline/clinical.

  7. Anishetty S, Pulimi M, Pennathur G (2005) Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Comput Biol Chem. https://doi.org/10.1016/j.compbiolchem.2005.07.001

    Article  PubMed  Google Scholar 

  8. Bishi LY, Vedithi SC, Blundell TL, Mugumbate G (2019) Computational Deorphaning of Mycobacterium tuberculosis Targets. Drug Discover Develop New Adv. https://doi.org/10.5772/intechopen.82374

    Article  Google Scholar 

  9. Stern S, Powers T, Changchien LM, Noller HF (1989) RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science 244:783–790

    CAS  PubMed  Google Scholar 

  10. Lopez Sanchez MIG, Cipullo M, Gopalakrishna S, Khawaja A, Rorbach J (2020) Methylation of ribosomal RNA: a mitochondrial perspective. Front Genet 11:761

    PubMed  PubMed Central  Google Scholar 

  11. Cavalli G, Paro R (1998) The drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93:505–518

    CAS  PubMed  Google Scholar 

  12. Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    CAS  PubMed  Google Scholar 

  13. Benyshek DC, Johnston CS, Martin JF (2006) Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malnourished during gestation and perinatal life. Diabetologia 49:1117–1119

    CAS  PubMed  Google Scholar 

  14. Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17:89–96

    CAS  PubMed  Google Scholar 

  15. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP et al (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, et al (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158:277–287

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D et al (2015) DNA Methylation on N6-Adenine in C. elegans. Cell 161:868–878

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    CAS  PubMed  Google Scholar 

  19. Cheng X, Blumenthal RM. S-Adenosylmethionine-Dependent Methyltransferases: Structures And Functions. World Scientific; 1999.

  20. Attieh JM, Hanson AD, Saini HS (1995) Purification and characterization of a novel methyltransferase responsible for biosynthesis of halomethanes and methanethiol inbrassica oleracea(*). J Biol Chem. https://doi.org/10.1074/jbc.270.16.9250

    Article  PubMed  Google Scholar 

  21. Ohsawa N, Tsujita M, Morikawa S, Itoh N (2001) Purification and Characterization of a Monohalomethane-producing Enzyme S-adenosyl-L-methionine Halide Ion Methyltransferase from a Marine Microalga, Pavlova pinguis. Biosci Biotechnol Biochem. https://doi.org/10.1271/bbb.65.2397

    Article  PubMed  Google Scholar 

  22. Cantoni GL (1953) S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J Biol Chem 204:403–416

    CAS  PubMed  Google Scholar 

  23. Waddell TG, Eilders LL, Patel BP, Sims M (2000) Prebiotic methylation and the evolution of methyl transfer reactions in living cells. Orig Life Evol Biosph 30:539–548

    CAS  PubMed  Google Scholar 

  24. Najm WI, Reinsch S, Hoehler F, Tobis JS, Harvey PW (2004) S-Adenosyl methionine (SAMe) versus celecoxib for the treatment of osteoarthritis symptoms: A double-blind cross-over trial. [ISRCTN36233495]. BMC Musculoskelet Disord 5:6

    PubMed  PubMed Central  Google Scholar 

  25. Wagner JM, Hackanson B, Lübbert M, Jung M (2010) Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. https://doi.org/10.1007/s13148-010-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gören JL, Stoll AL, Damico KE, Sarmiento IA, Cohen BM (2004) Bioavailability and lack of toxicity of S-adenosyl-L-methionine (SAMe) in humans. Pharmacotherapy 24:1501–1507

    PubMed  Google Scholar 

  27. Borroni B, Agosti C, Archetti S, Costanzi C, Bonomi S, Ghianda D et al (2004) Catechol-O-methyltransferase gene polymorphism is associated with risk of psychosis in Alzheimer Disease. Neurosci Lett. https://doi.org/10.1016/j.neulet.2004.08.006

    Article  PubMed  Google Scholar 

  28. Wuosmaa AM, Hager LP (1990) Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249:160–162

    CAS  PubMed  Google Scholar 

  29. Thomas DJ, Waters SB, Styblo M (2004) Elucidating the pathway for arsenic methylation. Toxicol Appl Pharmacol 198:319–326

    CAS  PubMed  Google Scholar 

  30. Lin H (2011) S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used? Bioorg Chem 39:161–170

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kozbial PZ, Mushegian AR (2005) Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:19

    PubMed  PubMed Central  Google Scholar 

  32. Gana R, Rao S, Huang H, Wu C, Vasudevan S (2013) Structural and functional studies of S-adenosyl-L-methionine binding proteins: a ligand-centric approach. BMC Struct Biol 13:6

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Cadicamo CD, Courtieu J, Deng H, Meddour A, O’Hagan D (2004) Cover picture: enzymatic fluorination in streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism (ChemBioChem 5/2004). ChemBioChem. https://doi.org/10.1002/cbic.200490021

    Article  PubMed  Google Scholar 

  34. Aktas M, Gleichenhagen J, Stoll R, Narberhaus F (2011) S-adenosylmethionine-binding properties of a bacterial phospholipid N-methyltransferase. J Bacteriol 193:3473–3481

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Basturea GN, Rudd KE, Deutscher MP (2006) Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. RNA 12:426–434

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ofengand J, Fournier MJ (1998) The pseudouridine residues of rRNA: number, location, biosynthesis, and function. Mod Edit RNA. https://doi.org/10.1128/9781555818296.ch12

    Article  Google Scholar 

  37. Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci. https://doi.org/10.1016/s0968-0004(02)02109-6

    Article  PubMed  Google Scholar 

  38. Chow P-L (2007) Stochastic Partial. Differential Equations. https://doi.org/10.1201/9781420010305

    Article  Google Scholar 

  39. Fine-Tuning of RNA Functions by Modification and Editing (2005). Top Curr Genet. https://doi.org/10.1007/b95147

    Article  Google Scholar 

  40. Ollivier S (2008) James Connolly : entre nationalisme et socialisme. Études irlandaises. https://doi.org/10.3406/irlan.2008.1824

    Article  Google Scholar 

  41. Cantoni GL (1975) Biological methylation: selected aspects. Annu Rev Biochem. https://doi.org/10.1146/annurev.bi.44.070175.002251

    Article  PubMed  Google Scholar 

  42. O’Hagan D, Schmidberger JW (2010) Enzymes that catalyse SN2 reaction mechanisms. Nat Prod Rep 27:900–918

    PubMed  Google Scholar 

  43. Petrossian TC, Clarke SG. Uncovering the human methyltransferasome. Mol Cell Proteomics. 2011;10: M110.000976.

  44. Becker S, Schneider C, Crisp A, Carell T (2018) Non-canonical nucleosides and chemistry of the emergence of life. Nat Commun 9:5174

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schneider C, Becker S, Okamura H, Crisp A, Amatov T, Stadlmeier M et al (2018) Noncanonical RNA Nucleosides as Molecular Fossils of an Early Earth-Generation by Prebiotic Methylations and Carbamoylations. Angew Chem Int Ed Engl 57:5943–5946

    CAS  PubMed  Google Scholar 

  46. Scheitl CPM, Ghaem Maghami M, Lenz A-K, Höbartner C (2020) Site-specific RNA methylation by a methyltransferase ribozyme. Nature 587:663–667

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci. https://doi.org/10.1016/s0968-0004(03)00090-2

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jeske L, Placzek S, Schomburg I, Chang A, Schomburg D (2019) BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res 47:D542–D549

    CAS  PubMed  Google Scholar 

  49. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    PubMed  Google Scholar 

  50. Marinus MG (2009) Methylation and other modifications of nucleic acids and proteins. Encycl Microbiol. https://doi.org/10.1016/b978-012373944-5.00080-8

    Article  Google Scholar 

  51. Jin Z, Liu Y (2018) DNA methylation in human diseases. Genes Dis 5:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Suarez-Alvarez B, Rodriguez RM, Fraga MF, López-Larrea C (2012) DNA methylation: a promising landscape for immune system-related diseases. Trends Genet 28:506–514

    CAS  PubMed  Google Scholar 

  53. Tost J (2009) DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Methods Mol Biol. https://doi.org/10.1007/978-1-59745-522-0_1

    Article  PubMed  Google Scholar 

  54. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Biggar KK, Li SSC (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol 16:5–17

    CAS  PubMed  Google Scholar 

  56. Hamard P-J, Santiago GE, Liu F, Karl DL, Martinez C, Man N et al (2018) PRMT5 regulates DNA repair by controlling the alternative splicing of histone-modifying enzymes. Cell Rep 24:2643–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou Y, Kong Y, Fan W, Tao T, Xiao Q, Li N et al (2020) Principles of RNA methylation and their implications for biology and medicine. Biomed Pharmacother 131:11073

    Google Scholar 

  58. Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20:608–624

    CAS  PubMed  Google Scholar 

  59. Frye M, Harada BT, Behm M, He C (2018) RNA modifications modulate gene expression during development. Science 361:1346–1349

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bohnsack K, Höbartner C, Bohnsack M (2019) Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes. https://doi.org/10.3390/genes10020102

    Article  PubMed  PubMed Central  Google Scholar 

  61. Esteve-Puig R, Bueno-Costa A, Esteller M (2020) Writers, readers and erasers of RNA modifications in cancer. Cancer Lett 474:127–137

    CAS  PubMed  Google Scholar 

  62. Muthusamy S (2020) m6A mRNA methylation: A pleiotropic regulator of cancer. Gene 736:144415

    CAS  PubMed  Google Scholar 

  63. Katz JE, Dlakić M, Clarke S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics 2:525–540

    CAS  PubMed  Google Scholar 

  64. Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wlodarski T, Kutner J, Towpik J, Knizewski L, Rychlewski L, Kudlicki A et al (2011) Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome. PLoS ONE 6:e23168

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tian W, Chen C, Lei X, Zhao J, Liang J (2018) CASTp 3.0 computed atlas of surface topography of proteins. Nucleic Acids Res 46:W363–W367

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Fauman EB, Blumenthal RM, Cheng X. Structure and evolution of adomet-dependent methyltransferases. S-Adenosylmethionine-Dependent Methyltransferases. 1999. https://doi.org/10.1142/9789812813077_0001

  68. interpro7-client. [cited 14 Feb 2020]. Available: https://www.ebi.ac.uk/interpro/entry/InterPro/IPR029063/#PUB00054125.

  69. Bijpuria S, Sharma R, Taneja B. Deletion of RsmE 16S rRNA methyltransferase leads to low level increase in aminoglycoside resistance in Mycobacterium smegmatis. 2020. https://doi.org/10.1101/2020.01.15.907279

  70. Malke H. Walter E. Hill, Albert Dahlberg, Roger A. Garrett, Peter B. Moore, David Schlessinger and Jonathan R. Warner (Editors), The Ribosome: Structure, Functions and Evolution. XXIII 678 S., 280 Abb., 91 Tab. Washington DC 1990. American Society for Microbiologie. $ 99.00. ISBN: 1–55581–020–9. Journal of Basic Microbiology. 1991. pp. 278–278. https://doi.org/10.1002/jobm.3620310407

  71. And RG, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem. https://doi.org/10.1146/annurev.biochem.66.1.679

    Article  Google Scholar 

  72. Nissen P (2000) The structural basis of ribosome activity in peptide bond synthesis. Science. https://doi.org/10.1126/science.289.5481.920

    Article  PubMed  Google Scholar 

  73. Poehlsgaard J, Douthwaite S (2005) The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol. https://doi.org/10.1038/nrmicro1265

    Article  PubMed  Google Scholar 

  74. Foik IP, Tuszynska I, Feder M, Purta E, Stefaniak F, Bujnicki JM (2018) Novel inhibitors of the rRNA ErmC’ methyltransferase to block resistance to macrolides, lincosamides, streptogramine B antibiotics. Eur J Med Chem 146:60–67

    CAS  PubMed  Google Scholar 

  75. Lauener F (2019) Genetic determinants and prediction of antibiotic resistance phenotypes in helicobacter pylori. JCM 8:53

    CAS  PubMed Central  Google Scholar 

  76. Singh V, Maniar K, Bhattacharayya R, Banerjee D (2017) Public databases of 16s rRNA: a current perspective and future implications. Next Generat Sequenc Applic. https://doi.org/10.4172/2469-9853.1000151

    Article  Google Scholar 

  77. Vázquez D (1979) Inhibitors of protein biosynthesis. Mol Biol Biochem Biophys. https://doi.org/10.1007/978-3-642-81309-2

    Article  PubMed  Google Scholar 

  78. Leclerc D, Melançon P, Brakier-Gingras L (1991) Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic Acids Res 19:3973–3977

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh V, Maniar K, Bhattacharayya R, Banerjee D. A Proposed Method for Identification of Streptomycin Resistance from 16s rRNA Sequence by Co-localization Analysis of Fluorescent Signals: A Step Towards Detection of Streptomycin Resistant Mycobacterium Species in Culture Free and Gene Amplification Independent Technique. Indian Journal of Clinical Biochemistry. 2018. https://doi.org/10.1007/s12291-017-0694-x

  80. Noller HF, Woese CR (1981) Secondary structure of 16S ribosomal RNA. Science 212:403–411

    CAS  PubMed  Google Scholar 

  81. Clemons WM Jr, May JL, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V (1999) Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature 400:833–840

    CAS  PubMed  Google Scholar 

  82. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, et al. Crystal structure of the ribosome at 5.5 A resolution. 2014. https://doi.org/10.2210/pdb4v42/pdbx

  83. Yusupov MM (2001) Crystal structure of the ribosome at 5.5 A resolution. Science. https://doi.org/10.1126/science.1060089

    Article  PubMed  Google Scholar 

  84. Ben-Shem A, Jenner L, Yusupova G, Yusupov M (2010) Crystal structure of the eukaryotic ribosome. Science 330:1203–1209

    CAS  PubMed  Google Scholar 

  85. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 30 Å resolution. Science 334:1524–1529

    CAS  PubMed  Google Scholar 

  86. Anger AM, Armache J-P, Berninghausen O, Habeck M, Subklewe M, Wilson DN et al (2013) Structures of the human and Drosophila 80S ribosome. Nature 497:80–85

    CAS  PubMed  Google Scholar 

  87. Wang Y, Tian RM, Gao ZM, Bougouffa S, Qian P-Y (2014) Optimal Eukaryotic 18S and Universal 16S/18S Ribosomal RNA primers and their application in a study of symbiosis. PLoS ONE. https://doi.org/10.1371/journal.pone.0090053

    Article  PubMed  PubMed Central  Google Scholar 

  88. Petrov AS, Bernier CR, Gulen B, Waterbury CC, Hershkovits E, Hsiao C et al (2014) Secondary structures of rRNAs from all three domains of life. PLoS ONE. https://doi.org/10.1371/journal.pone.0088222

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bernier CR, Petrov AS, Waterbury CC, Jett J, Li F, Freil LE et al (2014) RiboVision suite for visualization and analysis of ribosomes. Faraday Discuss. https://doi.org/10.1039/c3fd00126a

    Article  PubMed  Google Scholar 

  90. Sunita S, Purta E, Durawa M, Tkaczuk KL, Swaathi J, Bujnicki JM, et al. Crystal structure of 16S rRNA methyltransferase RsmC. 2007. https://doi.org/10.2210/pdb2pjd/pdb

  91. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Poldermans B, Roza L, Van Knippenberg PH (1979) Studies on the function of two adjacent N6, N6-dimethyladenosines near the 3’ end of 16 S ribosomal RNA of Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30 S interactions. J Biol Chem 254:9094–9100

    CAS  PubMed  Google Scholar 

  94. Kyuma T, Kizaki H, Ryuno H, Sekimizu K, Kaito C (2015) 16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus. Biochimie. https://doi.org/10.1016/j.biochi.2015.10.027

    Article  PubMed  Google Scholar 

  95. Mercante J, Edwards AN, Dubey AK, Babitzke P, Romeo T (2009) Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J Mol Biol 392:511

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gu XR, Gustafsson C, Ku J, Yu M, Santi DV (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38:4053–4057

    CAS  PubMed  Google Scholar 

  97. Tscherne JS, Nurse K, Popienick P, Michel H, Sochacki M, Ofengand J (1999) Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli. Biochemistry 38:1884–1892

    CAS  PubMed  Google Scholar 

  98. Valente RS, Xavier KB (2016) The Trk potassium transporter is required for RsmB-mediated activation of virulence in the phytopathogen pectobacterium wasabiae. J Bacteriol 198:248–255

    CAS  PubMed  Google Scholar 

  99. Tscherne JS, Nurse K, Popienick P, Ofengand J (1999) Purification, cloning, and characterization of the 16 S RNA m2G1207 methyltransferase from Escherichia coli. J Biol Chem. https://doi.org/10.1074/jbc.274.2.924

    Article  PubMed  Google Scholar 

  100. Bujnicki JM, Rychlewski L (2002) RNA:(guanine-N2) methyltransferases RsmC/RsmD and their homologs revisited–bioinformatic analysis and prediction of the active site based on the uncharacterized Mj0882 protein structure. BMC Bioinformatics 3:10

    PubMed  PubMed Central  Google Scholar 

  101. Lesnyak DV, Osipiuk J, Skarina T, Sergiev PV, Bogdanov AA, Edwards A et al (2007) Methyltransferase that modifies guanine 966 of the 16 S rRNA: functional identification and tertiary structure. J Biol Chem 282:5880–5887

    CAS  PubMed  Google Scholar 

  102. Basturea GN, Deutscher MP (2007) Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase. RsmE RNA 13:1969–1976

    CAS  PubMed  Google Scholar 

  103. Hallberg BM, Ericsson UB, Johnson KA, Andersen NM, Douthwaite S, Nordlund P et al (2006) The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain. J Mol Biol 360:774–787

    CAS  PubMed  Google Scholar 

  104. Demirci H, Larsen LHG, Hansen T, Rasmussen A, Cadambi A, Gregory ST et al (2010) Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus. RNA. https://doi.org/10.1261/rna.2088310

    Article  PubMed  PubMed Central  Google Scholar 

  105. Nishimura K, Johansen SK, Inaoka T, Hosaka T, Tokuyama S, Tahara Y et al (2007) Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants. J Bacteriol 189:6068–6073

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wei Y, Zhang H, Gao Z-Q, Wang W-J, Shtykova EV, Xu J-H et al (2012) Crystal and solution structures of methyltransferase RsmH provide basis for methylation of C1402 in 16S rRNA. J Struct Biol. https://doi.org/10.1016/j.jsb.2012.04.011

    Article  PubMed  Google Scholar 

  107. Zhao M, Zhang H, Liu G, Wang L, Wang J, Gao Z et al (2016) Structural insights into the methylation of C1402 in 16S rRNA by Methyltransferase RsmI. PLoS ONE. https://doi.org/10.1371/journal.pone.0163816

    Article  PubMed  PubMed Central  Google Scholar 

  108. Basturea GN, Dague DR, Deutscher MP, Rudd KE (2012) YhiQ is RsmJ, the methyltransferase responsible for methylation of G1516 in 16S rRNA of E. coli. J Mol Biol 415:16–21

    CAS  PubMed  Google Scholar 

  109. Tijet N, Andres P, Chung C, Lucero C, WHONET-Argentina Group, Low DE, et al. rmtD2, a new allele of a 16S rRNA methylase gene, has been present in Enterobacteriaceae isolates from Argentina for more than a decade. Antimicrob Agents Chemother. 2011;55: 904–909.

  110. Husain N, Tkaczuk KL, Tulsidas SR, Kaminska KH, Čubrilo S, Maravić-Vlahoviček G et al (2010) Structural basis for the methylation of G1405 in 16S rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m 7 G methyltransferases. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq122

    Article  PubMed  PubMed Central  Google Scholar 

  111. Husain N, Obranic S, Koscinski L, Seetharaman J, Babic F, Bujnicki JM et al (2011) Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit. Nucleic Acids Res 39:1903–1918

    CAS  PubMed  Google Scholar 

  112. Sergiev PV, Serebryakova MV, Bogdanov AA, Dontsova OA (2008) The ybiN gene of Escherichia coli encodes adenine-N6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel. J Mol Biol 375:291–300

    CAS  PubMed  Google Scholar 

  113. Witek MA, Kuiper EG, Minten E, Crispell EK, Conn GL (2017) A novel motif for S-Adenosyl-l-methionine binding by the Ribosomal RNA Methyltransferase TlyA from Mycobacterium tuberculosis. J Biol Chem 292:1977–1987

    CAS  PubMed  Google Scholar 

  114. van Buul CPJJ, Visser W, van Knippenberg PH (1984) Increased translational fidelity caused by the antibiotic kasugamycin and ribosomal ambiguity in mutants harbouring theksgAgene. FEBS Lett. https://doi.org/10.1016/0014-5793(84)80994-1

    Article  PubMed  Google Scholar 

  115. Brimacombe R (1995) The structure of ribosomal RNA: a three-dimensional jigsaw puzzle. Eur J Biochem. https://doi.org/10.1111/j.1432-1033.1995.0365h.x

    Article  PubMed  Google Scholar 

  116. O’Farrell HC, Scarsdale JN, Rife JP (2004) Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli. J Mol Biol 339:337–353

    PubMed  Google Scholar 

  117. Demirci H, Murphy F IV, Belardinelli R, Kelley AC, Ramakrishnan V, Gregory ST, et al. Crystal Structure of the 30S ribosomal subunit from a KsgA mutant of Thermus thermophilus (HB8). 2010. https://doi.org/10.2210/pdb3oto/pdb

  118. Connolly K, Rife JP, Culver G (2008) Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA. Mol Microbiol. https://doi.org/10.1111/j.1365-2958.2008.06485.x

    Article  PubMed  PubMed Central  Google Scholar 

  119. Nègre D, Weitzmann C, Ofengand J (1989) In vitro methylation of Escherichia coli 16S ribosomal RNA and 30S ribosomes. Proc Natl Acad Sci U S A 86:4902–4906

    PubMed  PubMed Central  Google Scholar 

  120. Burakovsky DE, Prokhorova IV, Sergiev PV, Milón P, Sergeeva OV, Bogdanov AA et al (2012) Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation. Nucleic Acids Res 40:7885–7895

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Foster PG, Nunes CR, Greene P, Moustakas D, Stroud RM (2003) The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Structure. https://doi.org/10.1016/j.str.2003.10.014

    Article  PubMed  Google Scholar 

  122. Sunita S, Purta E, Durawa M, Tkaczuk KL, Swaathi J, Bujnicki JM et al (2007) Functional specialization of domains tandemly duplicated within 16S rRNA methyltransferase RsmC. Nucleic Acids Res 35:4264–4274

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Lesnyak DV, Osipiuk J, Skarina T, Sergiev PV, Bogdanov AA, Edwards A et al (2007) Methyltransferase that modifies Guanine 966 of the 16 S rRNA. J Biol Chem. https://doi.org/10.1074/jbc.m608214200

    Article  PubMed  Google Scholar 

  124. Sergeeva OV, Prokhorova IV, Ordabaev Y, Tsvetkov PO, Sergiev PV, Bogdanov AA et al (2012) Properties of small rRNA methyltransferase RsmD: mutational and kinetic study. RNA 18:1178–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Weitzmann C, Tumminia SJ, Boublik M, Ofengand J (1991) A paradigm for local conformational control of function in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases. Nucleic Acids Res 19:7089–7095

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sergiev PV, Bogdanov AA, Dontsova OA (2007) Ribosomal RNA guanine-(N2)-methyltransferases and their targets. Nucleic Acids Res 35:2295–2301

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kumar A, Saigal K, Malhotra K, Sinha KM, Taneja B (2011) Structural and functional characterization of Rv2966c protein reveals an RsmD-like methyltransferase from Mycobacterium tuberculosis and the role of its N-terminal domain in target recognition. J Biol Chem 286:19652–19661

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, et al. Crystal structure of the ribosome at 5.5 A resolution. This file, 1GIX, contains the 30S ribosome subunit, three tRNA, and mRNA molecules. 50S ribosome subunit is in the file 1GIY. 2001. https://doi.org/10.2210/pdb1gix/pdb

  129. Moazed D, Noller HF (1986) Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell. https://doi.org/10.1016/0092-8674(86)90813-5

    Article  PubMed  Google Scholar 

  130. Selmer M (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science. https://doi.org/10.1126/science.1131127

    Article  PubMed  Google Scholar 

  131. Moazed D, Noller HF (1990) Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. J Mol Biol 211:135–145

    CAS  PubMed  Google Scholar 

  132. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3:2

    PubMed  PubMed Central  Google Scholar 

  133. Weitzmann C, Tumminia SJ, Boublik M, Ofengand J (1991) A paradigm for local conformational control of fucntion in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases. Nucleic Acids Res. https://doi.org/10.1093/nar/19.25.7089

    Article  PubMed  PubMed Central  Google Scholar 

  134. Abdi NM, Fredrick K (2005) Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11:1624–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Venkataraman S, Dhankar A, Sinha KM, Manivasakan P, Iqbal N, Singh TP, et al. Crystal structure of a new form of RsmD-like RNA methyl transferase from Mycobacterium tuberculosis determined at 1.74 A resolution. 2018. https://doi.org/10.2210/pdb6aie/pdb

  136. Berk V, Zhang W, Pai RD, Cate JHD. Correction for Berk et al., Structural basis for mRNA and tRNA positioning on the ribosome. Proceedings of the National Academy of Sciences. 2006. https://doi.org/10.1073/pnas.0610232103

  137. Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements. This file, 2I1C, contains the 30S ribosome subunit, two tRNA, and mRNA molecules. 50S ribosome subunit is in the file 1VS9. 2006. https://doi.org/10.2210/pdb2i1c/pdb

  138. Zhang H, Gao ZQ, Dong YH. Crystal structure of 16S rRNA Methyltransferase RsmE from E.coli. 2012. https://doi.org/10.2210/pdb4e8b/pdb

  139. Pfister P, Risch M, Brodersen DE, Böttger EC (2003) Role of 16S rRNA Helix 44 in ribosomal resistance to hygromycin B. Antimicrob Agents Chemother 47:1496–1502

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ogle JM, Carter AP, Ramakrishnan V (2003) Insights into the decoding mechanism from recent ribosome structures. Trends Biochem Sci 28:259–266

    CAS  PubMed  Google Scholar 

  141. Mahto SK, Chow CS (2013) Probing the stabilizing effects of modified nucleotides in the bacterial decoding region of 16S ribosomal RNA. Bioorg Med Chem 21:2720–2726

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cubrilo S, Babić F, Douthwaite S, Maravić VG (2009) The aminoglycoside resistance methyltransferase Sgm impedes RsmF methylation at an adjacent rRNA nucleotide in the ribosomal A site. RNA 15:1492–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kumar A, Kumar S, Taneja B (2014) The structure of Rv2372c identifies an RsmE-like methyltransferase from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr 70:821–832

    CAS  PubMed  Google Scholar 

  144. Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S et al (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63:1096–1106

    CAS  PubMed  Google Scholar 

  145. Romanowski MJ, Bonanno JB, Burley SK (2002) Crystal structure of the Escherichia coli glucose-inhibited division protein B (GidB) reveals a methyltransferase fold. Proteins 47:563–567

    CAS  PubMed  Google Scholar 

  146. Kimura S, Suzuki T (2010) Fine-tuning of the ribosomal decoding center by conserved methyl-modifications in the Escherichia coli 16S rRNA. Nucleic Acids Res 38:1341–1352

    CAS  PubMed  Google Scholar 

  147. Maus CE, Plikaytis BB, Shinnick TM (2005) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49:571–577

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-Encoded 2′-O-Methylations in 16S and 23S rRNAs. Mol Cell. https://doi.org/10.1016/j.molcel.2006.05.044

    Article  PubMed  Google Scholar 

  149. Zhao M, Wang L, Zhang H, Dong Y, Gong Y, Zhang L et al (2014) Purification, crystallization and preliminary crystallographic analysis of the 16S rRNA methyltransferase RsmI from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 70:1256–1259

    CAS  Google Scholar 

  150. Savic M, Lovric J, Tomic TI, Vasiljevic B, Conn GL (2009) Determination of the target nucleosides for members of two families of 16S rRNA methyltransferases that confer resistance to partially overlapping groups of aminoglycoside antibiotics. Nucleic Acids Res 37:5420–5431

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zelinskaya N, Rankin CR, Macmaster R, Savic M, Conn GL (2011) Expression, purification and crystallization of adenosine 1408 aminoglycoside-resistance rRNA methyltransferases for structural studies. Protein Expr Purif 75:89–94

    CAS  PubMed  Google Scholar 

  152. Macmaster R, Zelinskaya N, Savic M, Rankin CR, Conn GL (2010) Structural insights into the function of aminoglycoside-resistance A1408 16S rRNA methyltransferases from antibiotic-producing and human pathogenic bacteria. Nucleic Acids Res 38:7791–7799

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rahman MA, Sobia P, Dwivedi VP, Bhawsar A, Singh DK, Sharma P et al (2015) Mycobacterium tuberculosis TlyA protein negatively regulates T Helper (Th) 1 and Th17 differentiation and promotes tuberculosis pathogenesis. J Biol Chem 290:14407–14417

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Rahman A, Srivastava SS, Sneh A, Ahmed N, Krishnasastry MV (2010) Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: a non-conventional hemolysin and a ribosomal RNA methyl transferase. BMC Biochem 11:35

    PubMed  PubMed Central  Google Scholar 

  155. Arenas NE, Salazar LM, Soto CY, Vizcaíno C, Patarroyo ME, Patarroyo MA et al (2011) Molecular modeling and in silico characterization of Mycobacterium tuberculosis TlyA: possible misannotation of this tubercle bacilli-hemolysin. BMC Struct Biol 11:16

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wren BW, Stabler RA, Das SS, Butcher PD, Mangan JA, Clarke JD et al (1998) Characterization of a haemolysin from Mycobacterium tuberculosis with homology to a virulence factor of Serpulina hyodysenteriae. Microbiology 144(Pt 5):1205–1211

    CAS  PubMed  Google Scholar 

  157. Liscombe DK, Louie GV, Noel JP (2012) Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep 29:1238–1250

    CAS  PubMed  Google Scholar 

  158. Struck A-W, Thompson ML, Wong LS, Micklefield J (2012) S-Adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, Biosynthesis and other biotechnological applications. ChemBioChem. https://doi.org/10.1002/cbic.201200556

    Article  PubMed  Google Scholar 

  159. Desai S, Burra P (2015) BioInt: an integrative biological object-oriented application framework and interpreter. Int J Bioinform Res Appl. https://doi.org/10.1504/ijbra.2015.069195

    Article  PubMed  Google Scholar 

  160. Jin L. DOT1L structure in complex with SAM. Protein Data Bank, Rutgers University; 2011. https://doi.org/10.2210/pdb3qow/pdb

  161. Wang X, Guan Z, Zou T, Yin P. Crystal structure of SAM-bound METTL3-METTL14 complex. Worldwide Protein Data Bank; 2016. https://doi.org/10.2210/pdb5il1/pdb

  162. Guo Q, Liao S, Xu C, Structural Genomics Consortium (SGC). Structure of N6AMT1-TRMT112 complex with SAM. Worldwide Protein Data Bank; 2019. https://doi.org/10.2210/pdb6k0x/pdb

  163. Miller DJ, Ouellette N, Evdokimova E, Savchenko A, Edwards A, Anderson WF (2003) Crystal complexes of a predicted S-adenosylmethionine-dependent methyltransferase reveal a typical AdoMet binding domain and a substrate recognition domain. Protein Sci. https://doi.org/10.1110/ps.0302403

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ma B, Liu W, Zhang H. crystal structure of M1.HpyAVI-SAM complex. Worldwide Protein Data Bank; 2016. https://doi.org/10.2210/pdb5hfj/pdb

  165. Takeshita K, Suetake I, Yamashita E, Suga M, Narita H, Nakagawa A, et al. Crystal structure of mouse DNA methyltransferase 1 with AdoMet. Worldwide Protein Data Bank; 2011. https://doi.org/10.2210/pdb3av6/pdb

  166. Schluckebier G, Saenger W. ADENINE-N6-DNA-METHYLTRANSFERASE TAQI. Worldwide Protein Data Bank; 1997. https://doi.org/10.2210/pdb2adm/pdb

  167. Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, et al. FTSJ RNA methyltransferase complexed with s-adenosylmethionine, mercury derivative. Worldwide Protein Data Bank; 2000. https://doi.org/10.2210/pdb1ej0/pdb

  168. Foster PG, Nunes CR, Greene P, Moustakas D, Stroud RM (2004) The crystal structure of E. coli Fmu binary complex with S-Adenosylmethionine at 2.1 A resolution. Worldwide Protein Data Bank. https://doi.org/10.2210/pdb1sqf/pdb

    Article  Google Scholar 

  169. Li WJ, Shi Y, Zhang TL, Ye J, Ding JP. Crystal structure of human N6amt1-Trm112 in complex with SAM (space group I422). Worldwide Protein Data Bank; 2019. https://doi.org/10.2210/pdb6kms/pdb

  170. Boriack-Sjodin PA, Jin L. Crystal structure of PRMT5:MEP50 with compound 10 and SAM. Worldwide Protein Data Bank; 2016. https://doi.org/10.2210/pdb5eml/pdb

Download references

Acknowledgements

We thank ICMR (Indian Council of Medical Research) for providing funding for this ongoing project (Grant No. ICMR: ISRM 12(07)/2019). We would also like to take this opportunity to thank Dr. Yusupov MM (Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University), for allowing us to use the colored representation of the domains of 16S / 18S rRNA figures from his published article with a few modifications.

Author information

Authors and Affiliations

Authors

Contributions

BVLS took the initiative, providing the scope and template of the work, monitored the progress, reviewed, wrote, analyzed the data and corrected till the manuscript reached its submission stage. VB and SMR wrote the manuscript, collected, processed the required sequence and structure data and drew figures.

Corresponding author

Correspondence to V. L. S. Prasad Burra.

Ethics declarations

Conflict of interest

Authors do not have to disclose any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salaikumaran, M.R., Badiger, V.P. & Burra, V.L.S.P. 16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis. Protein J 41, 97–130 (2022). https://doi.org/10.1007/s10930-021-10029-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-10029-2

Keywords

Navigation