Skip to main content

The Structure Biology of Tau and Clue for Aggregation Inhibitor Design

Abstract

Tau is a microtubule-associated protein that is mainly expressed in central and peripheral nerve systems. Tau binds to tubulin and regulates assembly and stabilization of microtubule, thus playing a critical role in neuron morphology, axon development and navigation. Tau is highly stable under normal conditions; however, there are several factors that can induce or promote aggregation of tau, forming neurofibrillary tangles. Neurofibrillary tangles are toxic to neurons, which may be related to a series of neurodegenerative diseases including Alzheimer’s disease. Thus, tau is widely accepted as an important therapeutic target for neurodegenerative diseases. While the monomeric structure of tau is highly disordered, the aggregate structure of tau is formed by closed packing of β-stands. Studies on the structure of tau and the structural transition mechanism provide valuable information on the occurrence, development, and therapy of tauopathies. In this review, we summarize recent progress on the structural investigation of tau and based on which we discuss aggregation inhibitor design.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:5–21

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. 3.

    Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB, Blum D, Sayas CL, Mandelkow EM, Mandelkow E, Spillantini MG, Sousa N, Avila J, Medina M, Mudher A, Buee L (2017) Atypical, non-standard functions of the microtubule associated tau protein. Acta Neuropathol Commun 5:91

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Brandt R, Trushina NI, Bakota L (2020) Much more than a cytoskeletal protein: physiological and pathological functions of the non-microtubule binding region of tau. Front Neurol 11:590059

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Papin S, Paganetti P (2020) Emerging evidences for an implication of the neurodegeneration-associated protein tau in cancer. Brain Sci 10:862

    CAS  PubMed Central  Article  Google Scholar 

  7. 7.

    Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Sultan A, Nesslany F, Violet M, Begard S, Loyens A, Talahari S, Mansuroglu Z, Marzin D, Sergeant N, Humez S, Colin M, Bonnefoy E, Buee L, Galas MC (2011) Nuclear tau, a key player in neuronal DNA protection. J Biol Chem 286:4566–4575

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont J, Issad T, Gerhardt E, Pagesy P, Vileno M, Bournonville C, Hamdane M, Bantubungi K, Lancel S, Demeyer D, Eddarkaoui S, Vallez E, Vieau D, Humez S, Faivre E, Grenier-Boley B, Outeiro TF, Staels B, Amouyel P, Balschun D, Buee L, Blum D (2017) Tau deletion promotes brain insulin resistance. J Exp Med 214:2257–2269

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Cruz A, Verma M, Wolozin B (2019) The pathophysiology of tau and stress granules in disease. Adv Exp Med Biol 1184:359–372

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Szabo L, Eckert A, Grimm A (2020) Insights into disease-associated tau impact on mitochondria. Int J Mol Sci 21:6344

    CAS  PubMed Central  Article  Google Scholar 

  12. 12.

    Koren SA, Galvis-Escobar S, Abisambra JF (2020) Tau-mediated dysregulation of RNA: evidence for a common molecular mechanism of toxicity in frontotemporal dementia and other tauopathies. Neurobiol Dis 141:104939

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Goedert M, Eisenberg DS, Crowther RA (2017) Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40:189–210

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Brunden KR, Ballatore C, Crowe A, Smith AB 3rd, Lee VM, Trojanowski JQ (2010) Tau-directed drug discovery for Alzheimer’s disease and related tauopathies: a focus on tau assembly inhibitors. Exp Neurol 223:304–310

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI (2012) Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 136:8–22

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Wischik CM, Harrington CR, Storey JM (2014) Tau-aggregation inhibitor therapy for Alzheimer’s disease. Biochem Pharmacol 88:529–539

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Li C, Gotz J (2017) Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 16:863–883

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Medina M (2018) An overview on the clinical development of tau-based therapeutics. Int J Mol Sci 19:1160

    PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Soeda Y, Takashima A (2020) New insights into drug discovery targeting tau protein. Front Mol Neurosci 13:590896

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Andreadis A (2006) Misregulation of tau alternative splicing in neurodegeneration and dementia. Prog Mol Subcell Biol 44:89–107

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E (1994) Domains of tau protein and interactions with microtubules. Biochemistry 33:9511–9522

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Chen J, Kanai Y, Cowan NJ, Hirokawa N (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360:674–677

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Wegmann S, Medalsy ID, Mandelkow E, Muller DJ (2013) The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush. Proc Natl Acad Sci USA 110:E313-321

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Falcon B, Cavallini A, Angers R, Glover S, Murray TK, Barnham L, Jackson S, O’Neill MJ, Isaacs AM, Hutton ML, Szekeres PG, Goedert M, Bose S (2015) Conformation determines the seeding potencies of native and recombinant tau aggregates. J Biol Chem 290:1049–1065

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Chidambaram H, Chinnathambi S (2021) Role of cysteines in accelerating tau filament formation. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.07392020.01856720

    Article  Google Scholar 

  32. 32.

    Akoury E, Pickhardt M, Gajda M, Biernat J, Mandelkow E, Zweckstetter M (2013) Mechanistic basis of phenothiazine-driven inhibition of tau aggregation. Angew Chem Int Ed Engl 52:3511–3515

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso Adel C (2014) Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 30:346–358

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Almansoub H, Tang H, Wu Y, Wang DQ, Mahaman YAR, Wei N, Almansob YAM, He W, Liu D (2019) Tau abnormalities and the potential therapy in Alzheimer’s disease. J Alzheimers Dis 67:13–33

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Alquezar C, Arya S, Kao AW (2020) Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front Neurol 11:595532

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Kanemaru K, Takio K, Miura R, Titani K, Ihara Y (1992) Fetal-type phosphorylation of the tau in paired helical filaments. J Neurochem 58:1667–1675

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268:24374–24384

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Alonso AD, Di Clerico J, Li B, Corbo CP, Alaniz ME, Grundke-Iqbal I, Iqbal K (2010) Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem 285:30851–30860

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Liu F, Gong CX (2008) Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 3:8

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Irwin DJ, Cohen TJ, Grossman M, Arnold SE, Xie SX, Lee VM, Trojanowski JQ (2012) Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 135:807–818

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Ferreon JC, Jain A, Choi KJ, Tsoi PS, MacKenzie KR, Jung SY, Ferreon AC (2018) Acetylation disfavors tau phase separation. Int J Mol Sci 19:1360

    PubMed Central  Article  CAS  Google Scholar 

  44. 44.

    Cohen TJ, Guo JL, Hurtado DE, Kwong LK, Mills IP, Trojanowski JQ, Lee VM (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, Shirakawa K, Minami SS, Defensor E, Mok SA, Sohn PD, Schilling B, Cong X, Ellerby L, Gibson BW, Johnson J, Krogan N, Shamloo M, Gestwicki J, Masliah E, Verdin E, Gan L (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21:1154–1162

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Irwin DJ, Cohen TJ, Grossman M, Arnold SE, McCarty-Wood E, Van Deerlin VM, Lee VM, Trojanowski JQ (2013) Acetylated tau neuropathology in sporadic and hereditary tauopathies. Am J Pathol 183:344–351

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Cook C, Carlomagno Y, Gendron TF, Dunmore J, Scheffel K, Stetler C, Davis M, Dickson D, Jarpe M, DeTure M, Petrucelli L (2014) Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum Mol Genet 23:104–116

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Sohn PD, Tracy TE, Son HI, Zhou Y, Leite RE, Miller BL, Seeley WW, Grinberg LT, Gan L (2016) Acetylated tau destabilizes the cytoskeleton in the axon initial segment and is mislocalized to the somatodendritic compartment. Mol Neurodegener 11:47

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Gorsky MK, Burnouf S, Sofola-Adesakin O, Dols J, Augustin H, Weigelt CM, Gronke S, Partridge L (2017) Pseudo-acetylation of multiple sites on human tau proteins alters tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity. Sci Rep 7:9984

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Carlomagno Y, Chung DC, Yue M, Castanedes-Casey M, Madden BJ, Dunmore J, Tong J, DeTure M, Dickson DW, Petrucelli L, Cook C (2017) An acetylation-phosphorylation switch that regulates tau aggregation propensity and function. J Biol Chem 292:15277–15286

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger SR, Wang K, Williams D, DeTure M, Dickson DW, Cook CN, Seyfried NT, Petrucelli L, Fitzpatrick AWP (2020) Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180:633–644

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Kametani F, Yoshida M, Matsubara T, Murayama S, Saito Y, Kawakami I, Onaya M, Tanaka H, Kakita A, Robinson AC, Mann DMA, Hasegawa M (2020) Comparison of common and disease-specific post-translational modifications of pathological tau associated with a wide range of tauopathies. Front Neurosci 14:581936

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Avila J, Jimenez JS, Sayas CL, Bolos M, Zabala JC, Rivas G, Hernandez F (2016) Tau structures. Front Aging Neurosci 8:262

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol 118:573–584

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Schweers O, Schönbrunn-Hanebeck E, Marx A, Mandelkow E (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for b-structure. J Biol Chem 269:24290–24297

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Mukrasch MD, Markwick P, Biernat J, Bergen M, Bernado P, Griesinger C, Mandelkow E, Zweckstetter M, Blackledge M (2007) Highly populated turn conformations in natively unfolded tau protein identified from residual dipolar couplings and molecular simulation. J Am Chem Soc 129:5235–5243

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7:e34

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. 58.

    Schwalbe M, Ozenne V, Bibow S, Jaremko M, Jaremko L, Gajda M, Jensen MR, Biernat J, Becker S, Mandelkow E, Zweckstetter M, Blackledge M (2014) Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22:238–249

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Mukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, Zweckstetter M (2005) Sites of tau important for aggregation populate β-structure and bind to microtubules and polyanions. J Biol Chem 280:24978–24986

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Sibille N, Sillen A, Leroy A, Wieruszeski JM, Mulloy B, Landrieu I, Lippens G (2006) Structural impact of heparin binding to full-length tau as studied by NMR spectroscopy. Biochemistry 45:12560–12572

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Chen D, Drombosky KW, Hou Z, Sari L, Kashmer OM, Ryder BD, Perez VA, Woodard DR, Lin MM, Diamond MI, Joachimiak LA (2019) Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat Commun 10:2493

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Karikari TK, Thomas R, Moffat KG (2020) The C291R tau variant forms different types of protofibrils. Front Mol Neurosci 13:39

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Roman AY, Devred F, Byrne D, La Rocca R, Ninkina NN, Peyrot V, Tsvetkov PO (2019) Zinc induces temperature-dependent reversible self-assembly of tau. J Mol Biol 431:687–695

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Ahmadi S, Wu B, Song R, Zhu S, Simpson A, Wilson DJ, Kraatz HB (2020) Exploring the interactions of iron and zinc with the microtubule binding repeats R1 and R4. J Inorg Biochem 205:110987

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Mylonas E, Hascher A, Bernado P, Blackledge M, Mandelkow E, Svergun DI (2008) Domain conformation of tau protein studied by solution small-angle X-ray scattering. Biochemistry 47:10345–10353

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Nath A, Sammalkorpi M, DeWitt DC, Trexler AJ, Elbaum-Garfinkle S, O’Hern CS, Rhoades E (2012) The conformational ensembles of α-synuclein and tau: combining single-molecule FRET and simulations. Biophys J 103:1940–1949

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Wegmann S, Scholer J, Bippes CA, Mandelkow E, Muller DJ (2011) Competing interactions stabilize pro- and anti-aggregant conformations of human tau. J Biol Chem 286:20512–20524

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow E (2006) Global hairpin folding of tau in solution. Biochemistry 45:2283–2293

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Bibow S, Ozenne V, Biernat J, Blackledge M, Mandelkow E, Zweckstetter M (2011) Structural impact of proline-directed pseudophosphorylation at AT8, AT100, and PHF1 epitopes on 441-residue tau. J Am Chem Soc 133:15842–15845

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Luo Y, Ma BY, Nussinov R, Wei GH (2014) Structural insight into tau protein’s paradox of intrinsically disordered behavior, self-acetylation activity, and aggregation. J Phys Chem Lett 5:3026–3031

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Popov KI, Makepeace KAT, Petrotchenko EV, Dokholyan NV, Borchers CH (2019) Insight into the structure of the “unstructured” tau protein. Structure 27:1710–1715

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Manger LH, Foote AK, Wood SL, Holden MR, Heylman KD, Margittai M, Goldsmith RH (2017) Revealing conformational variants of solution-phase intrinsically disordered tau protein at the single-molecule level. Angew Chem Int Ed Engl 56:15584–15588

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Foote AK, Manger LH, Holden MR, Margittai M, Goldsmith RH (2019) Time-resolved multirotational dynamics of single solution-phase tau proteins reveals details of conformational variation. Phys Chem Chem Phys 21:1863–1871

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X, Goodarzi M, Pappu RV, Colby DW, Mirzaei H, Joachimiak LA, Diamond MI (2018) Inert and seed-competent tau monomers suggest structural origins of aggregation. Elife 7:e36584

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Sharma AM, Thomas TL, Woodard DR, Kashmer OM, Diamond MI (2018) Tau monomer encodes strains. Elife 7:e37813

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Wegmann S, Nicholls S, Takeda S, Fan Z, Hyman BT (2016) Formation, release, and internalization of stable tau oligomers in cells. J Neurochem 139:1163–1174

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Ward SM, Himmelstein DS, Lancia JK, Binder LI (2012) Tau oligomers and tau toxicity in neurodegenerative disease. Biochem Soc Trans 40:667–671

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Mroczko B, Groblewska M, Litman-Zawadzka A (2019) The role of protein misfolding and tau oligomers (TauOs) in Alzheimer’s disease (AD). Int J Mol Sci 20:4661

    CAS  PubMed Central  Article  Google Scholar 

  79. 79.

    Schweers O, Mandelkow EM, Biernat J, Mandelkow E (1995) Oxidation of cysteine-322 in the repeat domain of microtubule-associated protein tau controls the in vitro assembly of paired helical filaments. Proc Natl Acad Sci USA 92:8463–8467

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Kim D, Lim S, Haque MM, Ryoo N, Hong HS, Rhim H, Lee DE, Chang YT, Lee JS, Cheong E, Kim DJ, Kim YK (2015) Identification of disulfide cross-linked tau dimer responsible for tau propagation. Sci Rep 5:15231

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Friedhoff P, von Bergen M, Mandelkow EM, Davies P, Mandelkow E (1998) A nucleated assembly mechanism of Alzheimer paired helical filaments. Proc Natl Acad Sci USA 95:15712–15717

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Sahara N, Maeda S, Murayama M, Suzuki T, Dohmae N, Yen SH, Takashima A (2007) Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci 25:3020–3029

    PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Watanabe A, Hong WK, Dohmae N, Takio K, Morishima-Kawashima M, Ihara Y (2004) Molecular aging of tau: disulfide-independent aggregation and non-enzymatic degradation in vitro and in vivo. J Neurochem 90:1302–1311

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Karikari TK, Nagel DA, Grainger A, Clarke-Bland C, Hill EJ, Moffat KG (2019) Preparation of stable tau oligomers for cellular and biochemical studies. Anal Biochem 566:67–74

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Rosenberg KJ, Ross JL, Feinstein HE, Feinstein SC, Israelachvili J (2008) Complementary dimerization of microtubule-associated tau protein: implications for microtubule bundling and tau-mediated pathogenesis. Proc Natl Acad Sci USA 105:7445–7450

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Donhauser ZJ, Saunders JT, D’Urso DS, Garrett TA (2017) Dimerization and long-range repulsion established by both termini of the microtubule-associated protein tau. Biochemistry 56:5900–5909

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Feinstein HE, Benbow SJ, LaPointe NE, Patel N, Ramachandran S, Do TD, Gaylord MR, Huskey NE, Dressler N, Korff M, Quon B, Cantrell KL, Bowers MT, Lal R, Feinstein SC (2016) Oligomerization of the microtubule-associated protein tau is mediated by its N-terminal sequences: implications for normal and pathological tau action. J Neurochem 137:939–954

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Fichou Y, Oberholtzer ZR, Ngo H, Cheng CY, Keller TJ, Eschmann NA, Han S (2019) Tau-cofactor complexes as building blocks of tau fibrils. Front Neurosci 13:1339

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Ramachandran G, Udgaonkar JB (2011) Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by tau protein. J Biol Chem 286:38948–38959

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Soeda Y, Saito M, Maeda S, Ishida K, Nakamura A, Kojima S, Takashima A (2019) Methylene blue inhibits formation of tau fibrils but not of granular tau oligomers: a plausible key to understanding failure of a clinical trial for Alzheimer’s disease. J Alzheimers Dis 68:1677–1686

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Tepper K, Biernat J, Kumar S, Wegmann S, Timm T, Hubschmann S, Redecke L, Mandelkow EM, Muller DJ, Mandelkow E (2014) Oligomer formation of tau protein hyperphosphorylated in cells. J Biol Chem 289:34389–34407

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A (2007) Granular tau oligomers as intermediates of tau filaments. Biochemistry 46:3856–3861

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L, Ward S, Reyes JF, Philibert K, Glucksman MJ, Binder LI (2011) Characterization of prefibrillar tau oligomers in vitro and in Alzheimer disease. J Biol Chem 286:23063–23076

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR, Kayed R (2014) Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34:4260–4272

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Sarmiento J, Troncoso J, Jackson GR, Kayed R (2012) Identification of oligomers at early stages of tau aggregation in Alzheimer’s disease. FASEB J 26:1946–1959

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Lasagna-Reeves CA, Castillo-Carranza DL, Guerrero-Muoz MJ, Jackson GR, Kayed R (2010) Preparation and characterization of neurotoxic tau oligomers. Biochemistry 49:10039–10041

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Goedert M, Spillantini MG (2019) Ordered assembly of tau protein and neurodegeneration. Adv Exp Med Biol 1184:3–21

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Jakes R, Novak M, Davison M, Wischik CM (1991) Identification of 3- and 4-repeat tau isoforms within the PHF in Alzheimer’s disease. EMBO J 10:2725–2729

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Barghorn S, Davies P, Mandelkow E (2004) Tau paired helical filaments from Alzheimer’s disease brain and assembled in vitro are based on beta-structure in the core domain. Biochemistry 43:1694–1703

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4884–4888

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-b conformation. Proc Natl Acad Sci USA 83:503–507

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Berriman J, Serpell LC, Oberg KA, Fink AL, Goedert M, Crowther RA (2003) Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-b structure. Proc Natl Acad Sci USA 100:9034–9038

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Bibow S, Mukrasch MD, Chinnathambi S, Biernat J, Griesinger C, Mandelkow E, Zweckstetter M (2011) The dynamic structure of filamentous tau. Angew Chem Int Ed Engl 50:11520–11524

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Sillen A, Wieruszeski JM, Leroy A, Younes AB, Landrieu I, Lippens G (2005) High-resolution magic angle spinning NMR of the neuronal tau protein integrated in Alzheimer’s-like paired helical fragments. J Am Chem Soc 127:10138–10139

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Crowther RA (1991) Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc Natl Acad Sci USA 88:2288–2292

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Crowther RA, Wischik CM (1985) Image reconstruction of the Alzheimer paired helical filament. EMBO J 4:3661–3665

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Falcon B, Zhang W, Schweighauser M, Murzin AG, Vidal R, Garringer HJ, Ghetti B, Scheres SHW, Goedert M (2018) Tau filaments from multiple cases of sporadic and inherited Alzheimer’s disease adopt a common fold. Acta Neuropathol 136:699–708

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Falcon B, Zhang W, Murzin AG, Murshudov G, Garringer HJ, Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M (2018) Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 561:137–140

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R, Crowther RA, Newell KL, Ghetti B, Goedert M, Scheres SHW (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568:420–423

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Zhang W, Tarutani A, Newell KL, Murzin AG, Matsubara T, Falcon B, Vidal R, Garringer HJ, Shi Y, Ikeuchi T, Murayama S, Ghetti B, Hasegawa M, Goedert M, Scheres SHW (2020) Novel tau filament fold in corticobasal degeneration. Nature 580:283–287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Savastano A, Jaipuria G, Andreas L, Mandelkow E, Zweckstetter M (2020) Solid-state NMR investigation of the involvement of the P2 region in tau amyloid fibrils. Sci Rep 10:21210

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert M, Scheres SH (2019) Heparin-induced tau filaments are polymorphic and differ from those in Alzheimer’s and Pick’s diseases. Elife 8:e43584

    PubMed  PubMed Central  Article  Google Scholar 

  114. 114.

    Dregni AJ, Mandala VS, Wu H, Elkins MR, Wang HK, Hung I, DeGrado WF, Hong M (2019) In vitro 0N4R tau fibrils contain a monomorphic beta-sheet core enclosed by dynamically heterogeneous fuzzy coat segments. Proc Natl Acad Sci USA 116:16357–16366

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Scheres SH, Zhang W, Falcon B, Goedert M (2020) Cryo-EM structures of tau filaments. Curr Opin Struct Biol 64:17–25

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116.

    Hernandez-Vega A, Braun M, Scharrel L, Jahnel M, Wegmann S, Hyman BT, Alberti S, Diez S, Hyman AA (2017) Local nucleation of microtubule bundles through tubulin concentration into a condensed tau phase. Cell Rep 20:2304–2312

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M (2017) Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein tau. Nat Commun 8:275

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, Laskowski PR, MacKenzie D, Kamath T, Commins C, Vanderburg C, Roe AD, Fan Z, Molliex AM, Hernandez-Vega A, Muller D, Hyman AA, Mandelkow E, Taylor JP, Hyman BT (2018) Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J 37:e98049

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  119. 119.

    Boyko S, Qi X, Chen TH, Surewicz K, Surewicz WK (2019) Liquid-liquid phase separation of tau protein: the crucial role of electrostatic interactions. J Biol Chem 294:11054–11059

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Vega IE, Umstead A, Kanaan NM (2019) EFhd2 affects tau liquid-liquid phase separation. Front Neurosci 13:845

    PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Lin Y, McCarty J, Rauch JN, Delaney KT, Kosik KS, Fredrickson GH, Shea JE, Han S (2019) Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. Elife 8:e42571

    PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Ukmar-Godec T, Hutten S, Grieshop MP, Rezaei-Ghaleh N, Cima-Omori MS, Biernat J, Mandelkow E, Soding J, Dormann D, Zweckstetter M (2019) Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat Commun 10:2909

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123.

    Zhang X, Lin Y, Eschmann NA, Zhou H, Rauch JN, Hernandez I, Guzman E, Kosik KS, Han S (2017) RNA stores tau reversibly in complex coacervates. PLoS Biol 15:e2002183

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124.

    Boyko S, Surewicz K, Surewicz WK (2020) Regulatory mechanisms of tau protein fibrillation under the conditions of liquid-liquid phase separation. Proc Natl Acad Sci USA 117:31882–31890

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Rane JS, Kumari A, Panda D (2020) The acetyl mimicking mutation, K274Q in tau, enhances the metal binding affinity of tau and reduces the ability of tau to protect DNA. ACS Chem Neurosci 11:291–303

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  126. 126.

    Singh V, Xu L, Boyko S, Surewicz K, Surewicz WK (2020) Zinc promotes liquid-liquid phase separation of tau protein. J Biol Chem 295:5850–5856

    PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Wang K, Liu JQ, Zhong T, Liu XL, Zeng Y, Qiao X, Xie T, Chen Y, Gao YY, Tang B, Li J, Zhou J, Pang DW, Chen J, Chen C, Liang Y (2020) Phase separation and cytotoxicity of tau are modulated by protein disulfide isomerase and s-nitrosylation of this molecular chaperone. J Mol Biol 432:2141–2163

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Ambadipudi S, Reddy JG, Biernat J, Mandelkow E, Zweckstetter M (2019) Residue-specific identification of phase separation hot spots of Alzheimer’s-related protein tau. Chem Sci 10:6503–6507

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Lin Y, Fichou Y, Zeng Z, Hu NY, Han S (2020) Electrostatically driven complex coacervation and amyloid aggregation of tau are independent processes with overlapping conditions. ACS Chem Neurosci 11:615–627

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Majumdar A, Dogra P, Maity S, Mukhopadhyay S (2019) Liquid-liquid phase separation is driven by large-scale conformational unwinding and fluctuations of intrinsically disordered protein molecules. J Phys Chem Lett 10:3929–3936

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131.

    Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Wu H, Fuxreiter M (2016) The Structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165:1055–1066

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Feng Z, Chen X, Wu X, Zhang M (2019) Formation of biological condensates via phase separation: characteristics, analytical methods, and physiological implications. J Biol Chem 294:14823–14835

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Cramer P (2019) Organization and regulation of gene transcription. Nature 573:45–54

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Rhine K, Vidaurre V, Myong S (2020) RNA droplets. Annu Rev Biophys 49:247–265

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Aguzzi A, Altmeyer M (2016) Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26:547–558

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  139. 139.

    Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annu Rev Genet 53:171–194

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  140. 140.

    de Oliveira GAP, Cordeiro Y, Silva JL, Vieira T (2019) Liquid-liquid phase transitions and amyloid aggregation in proteins related to cancer and neurodegenerative diseases. Adv Protein Chem Struct Biol 118:289–331

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  141. 141.

    Rane JS, Kumari A, Panda D (2019) An acetylation mimicking mutation, K274Q, in tau imparts neurotoxicity by enhancing tau aggregation and inhibiting tubulin polymerization. Biochem J 476:1401–1417

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. 142.

    Kanaan NM, Hamel C, Grabinski T, Combs B (2020) Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat Commun 11:2809

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12:289–309

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. 144.

    Hong M, Chen DC, Klein PS, Lee VM (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272:25326–25332

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990–6995

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, Agullo JM, Perez M, Avila J, Guardia-Laguarta C, Clarimon J, Lleo A, Gomez-Isla T (2009) A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 35:359–367

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. 147.

    Liu X, Ou S, Yin M, Xu T, Wang T, Liu Y, Ding X, Yu X, Yuan J, Huang H, Zhang X, Tan X, Chen L, Chen Y (2017) N-methyl-D-aspartate receptors mediate epilepsy-induced axonal impairment and tau phosphorylation via activating glycogen synthase kinase-3β and cyclin-dependent kinase 5. Discov Med 23:221–234

    PubMed  PubMed Central  Google Scholar 

  148. 148.

    Aourz N, Serruys AK, Chabwine JN, Balegamire PB, Afrikanova T, Edrada-Ebel R, Grey AI, Kamuhabwa AR, Walrave L, Esguerra CV, van Leuven F, de Witte PAM, Smolders I, Crawford AD (2019) Identification of GSK-3 as a potential therapeutic entry point for epilepsy. ACS Chem Neurosci 10:1992–2003

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  149. 149.

    VandeVrede L, Dale ML, Fields S, Frank M, Hare E, Heuer HW, Keith K, Koestler M, Ljubenkov PA, McDermott D, Ohanesian N, Richards J, Rojas JC, Thijssen EH, Walsh C, Wang P, Wolf A, Quinn JF, Tsai R, Boxer AL (2020) Open-label phase 1 futility studies of salsalate and young plasma in progressive supranuclear palsy. Mov Disord Clin Pract 7:440–447

    PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Gozes I (2011) Microtubules (tau) as an emerging therapeutic target: NAP (davunetide). Curr Pharm Des 17:3413–3417

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Tsai RM, Miller Z, Koestler M, Rojas JC, Ljubenkov PA, Rosen HJ, Rabinovici GD, Fagan AM, Cobigo Y, Brown JA, Jung JI, Hare E, Geldmacher DS, Natelson-Love M, McKinley EC, Luong PN, Chuu EL, Powers R, Mumford P, Wolf A, Wang P, Shamloo M, Miller BL, Roberson ED, Boxer AL (2020) Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol 77:215–224

    PubMed  Article  PubMed Central  Google Scholar 

  152. 152.

    Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, Doody RS, Lees A, Golbe LI, Williams DR, Corvol JC, Ludolph A, Burn D, Lorenzl S, Litvan I, Roberson ED, Hoglinger GU, Koestler M, Jack CR Jr, Van Deerlin V, Randolph C, Lobach IV, Heuer HW, Gozes I, Parker L, Whitaker S, Hirman J, Stewart AJ, Gold M, Morimoto BH, Investigators AL (2014) Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 13:676–685

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Morimoto BH, Schmechel D, Hirman J, Blackwell A, Keith J, Gold M, AL-108-211 Study (2013) A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement Geriatr Cogn Disord 35:325–336

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Kundel F, De S, Flagmeier P, Horrocks MH, Kjaergaard M, Shammas SL, Jackson SE, Dobson CM, Klenerman D (2018) Hsp70 inhibits the nucleation and elongation of tau and sequesters tau aggregates with high Affinity. ACS Chem Biol 13:636–646

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Baughman HER, Clouser AF, Klevit RE, Nath A (2018) HspB1 and Hsc70 chaperones engage distinct tau species and have different inhibitory effects on amyloid formation. J Biol Chem 293:2687–2700

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Gorantla NV, Chinnathambi S (2018) Tau protein squired by molecular chaperones during Alzheimer’s disease. J Mol Neurosci 66:356–368

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    McEwan WA, Falcon B, Vaysburd M, Clift D, Oblak AL, Ghetti B, Goedert M, James LC (2017) Cytosolic Fc receptor TRIM21 inhibits seeded tau aggregation. Proc Natl Acad Sci USA 114:574–579

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Sandusky-Beltran LA, Sigurdsson EM (2020) Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology 175:108104

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  159. 159.

    Mok SA, Condello C, Freilich R, Gillies A, Arhar T, Oroz J, Kadavath H, Julien O, Assimon VA, Rauch JN, Dunyak BM, Lee J, Tsai FTF, Wilson MR, Zweckstetter M, Dickey CA, Gestwicki JE (2018) Mapping interactions with the chaperone network reveals factors that protect against tau aggregation. Nat Struct Mol Biol 25:384–393

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. 160.

    Cisek K, Cooper GL, Huseby CJ, Kuret J (2014) Structure and mechanism of action of tau aggregation inhibitors. Curr Alzheimer Res 11:918–927

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Calcul L, Zhang B, Jinwal UK, Dickey CA, Baker BJ (2012) Natural products as a rich source of tau-targeting drugs for Alzheimer’s disease. Future Med Chem 4:1751–1761

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Rauch JN, Olson SH, Gestwicki JE (2017) Interactions between microtubule-associated protein tau (MAPT) and small molecules. Cold Spring Harb Perspect Med 7:a024034

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  164. 164.

    Pickhardt M, Neumann T, Schwizer D, Callaway K, Vendruscolo M, Schenk D, St George-Hyslop P, Mandelkow EM, Dobson CM, McConlogue L, Mandelkow E, Toth G (2015) Identification of small molecule inhibitors of tau aggregation by targeting monomeric tau as a potential therapeutic approach for tauopathies. Curr Alzheimer Res 12:814–828

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. 165.

    Lo CH, Lim CK, Ding Z, Wickramasinghe SP, Braun AR, Ashe KH, Rhoades E, Thomas DD, Sachs JN (2019) Targeting the ensemble of heterogeneous tau oligomers in cells: a novel small molecule screening platform for tauopathies. Alzheimers Dement 15:1489–1502

    PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Kiss R, Csizmadia G, Solti K, Keresztes A, Zhu M, Pickhardt M, Mandelkow E, Toth G (2018) Structural basis of small molecule targetability of monomeric tau protein. ACS Chem Neurosci 9:2997–3006

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Chong B, Li M, Li T, Yu M, Zhang Y, Liu Z (2018) Conservation of potentially druggable cavities in intrinsically disordered proteins. ACS Omega 3:15643–15652

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  168. 168.

    Baggett DW, Nath A (2018) The rational discovery of a tau aggregation inhibitor. Biochemistry 57:6099–6107

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  169. 169.

    Zheng J, Liu C, Sawaya MR, Vadla B, Khan S, Woods RJ, Eisenberg D, Goux WJ, Nowick JS (2011) Macrocyclic beta-sheet peptides that inhibit the aggregation of a tau-protein-derived hexapeptide. J Am Chem Soc 133:3144–3157

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L, Zirafi O, Stevens JT, Munch J, Baker D, Eisenberg D (2011) Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475:96–100

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  171. 171.

    Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS (2018) Structure-based inhibitors of tau aggregation. Nat Chem 10:170–176

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  172. 172.

    Seidler PM, Boyer DR, Murray KA, Yang TP, Bentzel M, Sawaya MR, Rosenberg G, Cascio D, Williams CK, Newell KL, Ghetti B, DeTure MA, Dickson DW, Vinters HV, Eisenberg DS (2019) Structure-based inhibitors halt prion-like seeding by Alzheimer’s disease-and tauopathy-derived brain tissue samples. J Biol Chem 294:16451–16464

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Berhanu WM, Masunov AE (2015) Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of curcumin, exifone, and myricetin interaction with the segment of tau peptide oligomer. J Biomol Struct Dyn 33:1399–1411

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR (1996) Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci USA 93:11213–11218

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Seripa D, Solfrizzi V, Imbimbo BP, Daniele A, Santamato A, Lozupone M, Zuliani G, Greco A, Logroscino G, Panza F (2016) Tau-directed approaches for the treatment of Alzheimer’s disease: focus on leuco-methylthioninium. Expert Rev Neurother 16:259–277

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  176. 176.

    Gauthier S, Feldman HH, Schneider LS, Wilcock GK, Frisoni GB, Hardlund JH, Moebius HJ, Bentham P, Kook KA, Wischik DJ, Schelter BO, Davis CS, Staff RT, Bracoud L, Shamsi K, Storey JM, Harrington CR, Wischik CM (2016) Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388:2873–2884

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. 177.

    Wilcock GK, Gauthier S, Frisoni GB, Jia J, Hardlund JH, Moebius HJ, Bentham P, Kook KA, Schelter BO, Wischik DJ, Davis CS, Staff RT, Vuksanovic V, Ahearn T, Bracoud L, Shamsi K, Marek K, Seibyl J, Riedel G, Storey JMD, Harrington CR, Wischik CM (2018) Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J Alzheimers Dis 61:435–457

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  178. 178.

    Gorantla NV, Landge VG, Nagaraju PG, Priyadarshini Cg P, Balaraman E, Chinnathambi S (2019) Molecular cobalt(II) complexes for tau polymerization in Alzheimer’s disease. ACS Omega 4:16702–16714

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol 14:399–415

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Tortelli R, Galizia I, Prete C, Daniele A, Pilotto A, Greco A, Logroscino G (2016) Tau-based therapeutics for Alzheimer’s disease: active and passive immunotherapy. Immunotherapy 8:1119–1134

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  181. 181.

    Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R, Vince-Kazmerova Z, Katina S, Fialova L, Prcina M, Parrak V, Dal-Bianco P, Brunner M, Staffen W, Rainer M, Ondrus M, Ropele S, Smisek M, Sivak R, Winblad B, Novak M (2017) Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol 16:123–134

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  182. 182.

    Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV (2017) CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys J 112:16–21

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Yan R, Xu D, Yang J, Walker S, Zhang Y (2013) A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep 3:2619

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Hubei Province [Grant Number 2019CFB713] and funding from Hubei University of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongqi Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Huang, X., Yan, L. et al. The Structure Biology of Tau and Clue for Aggregation Inhibitor Design. Protein J 40, 656–668 (2021). https://doi.org/10.1007/s10930-021-10017-6

Download citation

Keywords

  • Tauopathies
  • Protein aggregation
  • Fibril structure
  • Drug design
  • Neurodegenerative diseases