Skip to main content
Log in

The Kringle of Life

  • Published:
The Protein Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Allman EL, Painter HJ, Samra J, Carrasquilla M, Llinás M. “Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways.” Antimicrobial Agents and Chemotherapy. 2016; pii: AAC.01224–16.

  2. Byeon IJ, Kelley RF, Llinás M (1989) 1H NMR structural characterization of a recombinant kringle 2 domain from human tissue-type plasminogen activator. Biochemistry 28(24):9350–9360. https://doi.org/10.1021/bi00450a016

    Article  CAS  PubMed  Google Scholar 

  3. Cellitti J, Llinás M, Echols N, Shank EA, Gillespie B, Kwon E, Crowder SM, Dahlquist FW, Alber T, Marqusee S (2007) Exploring subdomain cooperativity in T4 lysozyme I: structural and energetic studies of a circular permutant and protein fragment. Protein Sci 16(5):842–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Christen MT, Frank P, Schaller J, Llinás M (2010) Human plasminogen kringle 3: solution structure, functional insights, phylogenetic landscape. Biochemistry 49(33):7131–7150. https://doi.org/10.1021/bi100687f

    Article  CAS  PubMed  Google Scholar 

  5. Cobbold SA, Vaughan AM, Lewis IA, Painter HJ, Camargo N, Perlman DH, Fishbaugher M, Healer J, Cowman AF, Kappe SH, Llinás M (2013) kinetic flux profiling elucidates two independent acetyl-CoA biosynthetic pathways in plasmodium falciparum. J Biol Chem 288(51):36338–36350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cowell AN et al (2018) Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. https://doi.org/10.1126/science.aan4472

    Article  PubMed  PubMed Central  Google Scholar 

  7. De Marco A, Hochschwender SM, Laursen RA, Llinás M (1982) Human plasminogen. Proton NMR studies on kringle 1. J Biol Chem 257(21):12716–12721

    Article  PubMed  Google Scholar 

  8. Gehrmann M, Briknarová K, Bányai L, Patthy L, Llinás M (2002) The col-1 module of human matrix metalloproteinase-2 (MMP-2): structural/functional relatedness between gelatin-binding fibronectin type II modules and lysine-binding kringle domains. Biol Chem 383(1):137–148. https://doi.org/10.1515/BC.2002.014

    Article  CAS  PubMed  Google Scholar 

  9. Hu CK, Kohnert U, Wilhelm O, Fischer S, Llinás M (1994) Tissue-type plasminogen activator domain-deletion mutant BM 06.022: modular stability, inhibitor binding, and activation cleavage. Biochemistry 33(39):11760–11766. https://doi.org/10.1021/bi00205a011

    Article  CAS  PubMed  Google Scholar 

  10. Hu CK, Kohnert U, Sturzebecher J, Fischer S, Llinas M (1996) Complexation of the tissue plasminogen activator protease with benzamidine-type inhibitors: interference by the kringle 2 module. Biochemistry 35(10):3270–3276. https://doi.org/10.1021/bi9515026

    Article  CAS  PubMed  Google Scholar 

  11. Ji WR, Castellino FJ, Chang Y, Deford ME, Gray H, Villarreal X, Kondri ME, Marti DN, Llinás M, Schaller J, Kramer RA, Trail PA (1998) Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. FASEB J 12(15):1731–1738. https://doi.org/10.1096/fasebj.12.15.1731

    Article  CAS  PubMed  Google Scholar 

  12. Ke H, Lewis IA, Morrisey JM, McLean KJ, Ganesan SM, Painter HJ, Mather MW, Jacobs-Lorena M, Llinás M, Vaidya AB (2015) Genetic investigation of tricarboxylic acid metabolism during the Plasmodium falciparum life cycle. Cell Rep 11(1):164–174. https://doi.org/10.1016/j.celrep.2015.03.011 (Epub 2015 Apr 2)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kohnert U, Wozny M, Llinás M, Roos A, Fischer S (1995) Active site labeling with dansyl-glutamyl-glycyl-arginyl chloromethyl ketone demonstrates the full activity of the refolded and purified tissue-type plasminogen activator variant BM 06.022. Appl Biochem Biotechnol 55(2):157–166

    Article  CAS  PubMed  Google Scholar 

  14. Liu H, Farr-Jones S, Ulyanov NB, Llinás M, Marqusee S, Groth D, Cohen FE, Prusiner SB, James TL (1999) Solution structure of Syrian hamster prion protein rPrP (90-231). Biochemistry 38(17):5362–5377

    Article  CAS  PubMed  Google Scholar 

  15. Llinás M, Klein MP, Neilands JB (1970) Solution conformation of ferrichrome, a microbial iron transport cyclohexapeptide, as deduced by high resolution proton magnetic resonance. J Mol Biol 52(3):399–414. https://doi.org/10.1016/0022-2836(70)90409-2

    Article  PubMed  Google Scholar 

  16. Llinás M, Klein MP, Neilands JB (1972) The solution conformation of the ferrichromes. II. Proton magnetic resonance of metal-free ferricrocin and ferrichrysin, conformational implications. Int J Pept Protein Res 4(3):157–166

    Article  PubMed  Google Scholar 

  17. Llinás M, Klein MP, Neilands JB (1972) Solution conformation of the ferrichromes. A comparative proton magnetic resonance study of glycine- and serine-containing ferrichromes. J Mol Biol 68(2):265–284. https://doi.org/10.1016/0022-2836(72)90213-6

    Article  PubMed  Google Scholar 

  18. Llinás M, Klein MP, Neilands JB (1973) The solution conformation of the ferrichromes. IV. pH dependence of the individual slow amide hydrogen-deuterium exchange in alumichrome. J Biol Chem 248(3):915–923

    Article  PubMed  Google Scholar 

  19. Llinás M, Klein MP, Neilands JB (1973) The solution conformation of the ferrichromes. V. The hydrogen exchange kinetics of ferrichrome analogues; the conformational state of the peptides. J Biol Chem 248(3):924–931

    Article  PubMed  Google Scholar 

  20. Llinás M, Wilson DM, Neilands JB (1973) Effect of metal binding on the conformation of enterobactin. A proton and carbon-13 nuclear magnetic resonance study. Biochemistry 12(20):3836–3843. https://doi.org/10.1021/bi00744a007

    Article  PubMed  Google Scholar 

  21. Llinás M, Wüthrich K, Schwotzer W, Von Philipsborn W (1975) 15N nuclear magnetic resonance of living cells. Nature 257(5529):817–818. https://doi.org/10.1038/257817a0

    Article  PubMed  Google Scholar 

  22. Llinás M, Wilson DM, Klein MP, Neilands JB (1976a) 13C nuclear magnetic resonance of the errichrome peptides: structural and strain contributions to the conformational state. J Mol Biol 104(4):853–864. https://doi.org/10.1016/0022-2836(76)90186-8

    Article  PubMed  Google Scholar 

  23. Llinás M, Neilands JB (1976b) The structure of two alanine containing ferrichromes: sequence determination by proton magnetic resonance. Biophys Struct Mech 2(2):105–117. https://doi.org/10.1007/BF00863704

    Article  PubMed  Google Scholar 

  24. Llinás M, Meier W, Wüthrich K (1977) A carbon-13 spin lattice relaxation study of alumichrome at 25.1 MHz and 90.5 MHz. Biochim Biophys Acta 492(1):1–11. https://doi.org/10.1016/0005-2795(77)90208-2

    Article  PubMed  Google Scholar 

  25. Llinás M, Wilson DM, Neilands JB (1977) Peptide strain. Conformation dependence of the carbon-13 nuclear magnetic resonance chemical shifts in the ferrichromes. J Am Chem Soc 99(11):3631–3637. https://doi.org/10.1021/ja00453a020

    Article  PubMed  Google Scholar 

  26. Llinás M, Wüthrich K (1978a) A nitrogen-15 spin-lattice relaxation study of alumichrome. Biochim Biophys Acta 532(1):29–40. https://doi.org/10.1016/0005-2795(78)90444-0

    Article  PubMed  Google Scholar 

  27. Llinás M, Klein MP, Wüthrich K (1978b) Amide proton spin-lattice relaxation in polypeptides. A field-dependence study of the proton and nitrogen dipolar interactions in alumichrome. Biophys J 24(3):849–862. https://doi.org/10.1016/S0006-3495(78)85424-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Llinás M, Gillespie B, Dahlquist FW, Marqusee S (1999) The energetics of T4 lysozyme reveal a hierarchy of conformations. Nat Struct Biol 6(11):1072–1078

    Article  PubMed  Google Scholar 

  29. Llinás M, Bozdech Z, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 3(12):426

    Google Scholar 

  30. Marti DN, Schaller J, Llinás M (1999) Solution structure and dynamics of the plasminogen kringle 2-AMCHA complex: 3(1)-helix in homologous domains. Biochemistry 38(48):15741–15755. https://doi.org/10.1021/bi9917378

    Article  CAS  PubMed  Google Scholar 

  31. Marti DN, Hu CK, An SS, von Haller P, Schaller J, Llinás M (1997) Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. Biochemistry 36(39):11591–11604. https://doi.org/10.1021/bi971316v

    Article  CAS  PubMed  Google Scholar 

  32. Motta A, Laursen RA, Llinás M, Tulinsky A, Park CH (1987) Complete assignment of the aromatic proton magnetic resonance spectrum of the kringle 1 domain from human plasminogen: structure of the ligand-binding site. Biochemistry 26(13):3827–3836. https://doi.org/10.1021/bi00387a014

    Article  CAS  PubMed  Google Scholar 

  33. Mullis K (1998) Dancing Naked in the mind field. Pantheon Books, New York, p 222

    Google Scholar 

  34. Olszewski KL, Morrisey JM, Wilinski D, Burns JM, Vaidya AB, Rabinowitz JD, Llinás M (2009) Host-parasite interactions revealed by Plasmodium falciparum metabolomics. Cell Host Microbe 5(2):191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ozhogina OA, Grishaev A, Bominaar EL, Patthy L, Trexler M, Llinás M (2008) NMR solution structure of the neurotrypsin Kringle domain. Biochemistry 47(47):12290–12298. https://doi.org/10.1021/bi800555z

    Article  CAS  PubMed  Google Scholar 

  36. Petros AM, Gyenes M, Patthy L, Llinás M (1988) Analysis of the aliphatic 1H-NMR spectrum of plasminogen kringle 4. A comparative study of human, porcine, bovine and chicken homologs. Eur J Biochem 170(3):549–563. https://doi.org/10.1111/j.1432-1033.1988.tb13734.x

    Article  CAS  PubMed  Google Scholar 

  37. Ramesh V, Petros AM, Llinás M, Tulinsky A, Park CH (1987) Proton magnetic resonance study of lysine-binding to the kringle 4 domain of human plasminogen. The structure of the binding site. J Mol Biol 198(3):481–498. https://doi.org/10.1016/0022-2836(87)90295-6

    Article  CAS  PubMed  Google Scholar 

  38. Rejante MR, Byeon IJ, Llinás M (1991) Ligand specificity of human plasminogen kringle 4. Biochemistry 30(46):11081–11092. https://doi.org/10.1021/bi00110a010

    Article  CAS  PubMed  Google Scholar 

  39. Thewes T, Ramesh V, Simplaceanu EL, Llinás M (1988) Analysis of the aromatic 1H-NMR spectrum of the kringle 5 domain from human plasminogen. Evidence for a conserved kringle fold. Eur J Biochem 175(2):237–249. https://doi.org/10.1111/j.1432-1033.1988.tb14189.x

    Article  CAS  PubMed  Google Scholar 

  40. Thewes T, Constantine K, Byeon IJ, Llinás M (1990) Ligand interactions with the kringle 5 domain of plasminogen. A study by 1H NMR spectroscopy. J Biol Chem 265(7):3906–3915

    Article  CAS  PubMed  Google Scholar 

  41. Weblink: https://newsletter.eecs.berkeley.edu/2017/08/alumni-spotlight-estela-llinas/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Llinás.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llinás, M. The Kringle of Life. Protein J 40, 454–456 (2021). https://doi.org/10.1007/s10930-021-10009-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-10009-6

Navigation