Skip to main content

Enzymes for Efficient CO2 Conversion

Abstract

The accumulation of carbon dioxide in the atmosphere as a result of human activities has caused a number of adverse circumstances in the world. For this reason, the proposed solutions lie within the aim of reducing carbon dioxide emissions have been quite valuable. However, as the human activity continues to increase on this planet, the possibility of reducing carbon dioxide emissions decreases with the use of conventional methods. The emergence of compounds than can be used in different fields by converting the released carbon dioxide into different chemicals will construct a fundamental solution to the problem. Although electro-catalysis or photolithography methods have emerged for this purpose, they have not been able to achieve successful results. Alternatively, another proposed solution are enzyme based systems. Among the enzyme-based systems, pyruvate decarboxylase, carbonic anhydrase and dehydrogenases have been the most studied enzymes. Pyruvate dehydrogenase and carbonic anhydrase have either been an expensive method or were incapable of producing the desired result due to the reaction cascade they catalyze. However, the studies reporting the production of industrial chemicals from carbon dioxide using dehydrogenases and in particular, the formate dehydrogenase enzyme, have been remarkable. Moreover, reported studies have shown the existence of more active and stable enzymes, especially the dehydrogenase family that can be identified from the biome. In addition to this, their redesign through protein engineering can have an immense contribution to the increased use of enzyme-based methods in CO2 reduction, resulting in an enormous expansion of the industrial capacity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology—the U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenh Gas Control 2:9–20. https://doi.org/10.1016/s1750-5836(07)00094-1

    CAS  Article  Google Scholar 

  2. 2.

    Minic Z, Thongbam PD (2011) The biological deep sea hydrothermal vent as a model to study carbon dioxide capturing enzymes. Mar Drugs 9:719–738. https://doi.org/10.3390/md9050719

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Li BY, Duan YH, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447. https://doi.org/10.1016/j.apenergy.2012.09.009

    CAS  Article  Google Scholar 

  4. 4.

    Sun QY, Jiang YJ, Jiang ZY et al (2009) Green and efficient conversion of CO2 to methanol by biomimetic coimmobilization of three dehydrogenases in protamine-templated titania. Ind Eng Chem Res 48:4210–4215. https://doi.org/10.1021/ie801931j

    CAS  Article  Google Scholar 

  5. 5.

    Hurst TF, Cockerill TT, Florin NH (2012) Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage. Energy Environ Sci 5:7132–7150. https://doi.org/10.1039/c2ee21204h

    CAS  Article  Google Scholar 

  6. 6.

    Qu YQ, Duan XF (2012) One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion. J Mater Chem 22:16171–16181. https://doi.org/10.1039/c2jm32267f

    CAS  Article  Google Scholar 

  7. 7.

    Windle CD, Perutz RN (2012) Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coord Chem Rev 256:2562–2570. https://doi.org/10.1016/j.ccr.2012.03.010

    CAS  Article  Google Scholar 

  8. 8.

    Nahar S, Zain MFM, Kadhum AAH et al (2017) Advances in photocatalytic CO(2) reduction with water: a review. Mater 10:629. https://doi.org/10.3390/ma10060629

    CAS  Article  Google Scholar 

  9. 9.

    Wang M, She YB, Zhou XT, Ji HB (2011) Efficient solvent-free synthesis of chloropropene carbonate from the coupling reaction of CO2 and epichlorohydrin catalyzed by magnesium porphyrins as chlorophyll-like catalysts. Chin J Chem Eng 19:446–451. https://doi.org/10.1016/S1004-9541(11)60005-0

    CAS  Article  Google Scholar 

  10. 10.

    Chen HL, Wang SJ, Xiao M et al (2012) Direct synthesis of dimethyl carbonate from CO2 and CH3OH using 0.4 nm molecular sieve supported Cu-Ni bimetal catalyst. Chin J Chem Eng 20:906–913. https://doi.org/10.1016/S1004-9541(12)60417-0

    CAS  Article  Google Scholar 

  11. 11.

    Ying-Min Y, Yi-Ping Z, Jin-Hua F et al (2005) Silica immobilized ruthenium catalyst for formic acid synthesis from supercritical carbon dioxide hydrogenation II: effect of reaction conditions on the catalyst performance. Chin J Chem 23:977–982. https://doi.org/10.1002/cjoc.200590977

    Article  Google Scholar 

  12. 12.

    Motokura K, Kashiwame D, Miyaji A, Baba T (2012) Copper-catalyzed formic acid synthesis from CO2 with hydrosilanes and H2O. Org Lett 14:2642–2645. https://doi.org/10.1021/ol301034j

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Amao Y, Takahara S, Sakai Y (2014) Visible-light induced hydrogen and formic acid production from biomass and carbon dioxide with enzymatic and artificial photosynthesis system. Int J Hydrogen Energy 39:20771–20776. https://doi.org/10.1016/j.ijhydene.2014.06.135

    CAS  Article  Google Scholar 

  14. 14.

    Lee DJ, Cho DH (2001) On optimum timer value of area and timer-based location registration scheme. IEEE Commun Lett 5:148–150. https://doi.org/10.1109/4234.917096

    Article  Google Scholar 

  15. 15.

    Lobanov AV, Kholuiskaya SN, Komissarov GG (2004) Photocatalytic synthesis of formaldehyde from CO2 and H2O2. Dokl Phys Chem 399:266–268. https://doi.org/10.1023/B:DOPC.0000048071.52900.f4

    CAS  Article  Google Scholar 

  16. 16.

    Park SW, Joo OS, Jung KD et al (2001) Development of ZnO/Al2O3 catalyst for reverse-water-gas-shift reaction of CAMERE (carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction) process. Appl Catal A 211:81–90. https://doi.org/10.1016/S0926-860x(00)00840-1

    CAS  Article  Google Scholar 

  17. 17.

    Zhang LX, Zhang YC, Chen SY (2012) Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation. Appl Catal A 415:118–123. https://doi.org/10.1016/j.apcata.2011.12.013

    CAS  Article  Google Scholar 

  18. 18.

    Qu JP, Zhang XG, Wang YG, Xie CX (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50:3576–3580. https://doi.org/10.1016/j.electacta.2004.11.061

    CAS  Article  Google Scholar 

  19. 19.

    Theleritis D, Souentie S, Siokou A et al (2012) Hydrogenation of CO2 over Ru/YSZ electropromoted catalysts. Acs Catal 2:770–780. https://doi.org/10.1021/cs300072a

    CAS  Article  Google Scholar 

  20. 20.

    Popic JP, AvramovIvic ML, Vukovic NB (1997) Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3. J Electroanal Chem 421:105–110. https://doi.org/10.1016/S0022-0728(96)04823-1

    CAS  Article  Google Scholar 

  21. 21.

    Subrahmanyam M (1999) A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl Catal B 23:169–174. https://doi.org/10.1016/s0926-3373(99)00079-x

    CAS  Article  Google Scholar 

  22. 22.

    Chen Y, Xu C, Vaidyanathan S (2020) Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production. Appl Energy. https://doi.org/10.1016/j.apenergy.2019.114420

    Article  Google Scholar 

  23. 23.

    Anwar MN, Fayyaz A, Sohail NF et al (2020) CO2 utilization: Turning greenhouse gas into fuels and valuable products. J Environ Manag. https://doi.org/10.1016/j.jenvman.2019.110059

    Article  Google Scholar 

  24. 24.

    Hong ME, Chang WS, Patel AK et al (2019) Microalgal-based carbon sequestration by converting LNG-fired waste CO2 into red gold astaxanthin: the potential applicability. Energies. https://doi.org/10.3390/en12091718

    Article  Google Scholar 

  25. 25.

    Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81. https://doi.org/10.1039/b912904a

    CAS  Article  Google Scholar 

  26. 26.

    White JL, Baruch MF, Pander Iii JE et al (2015) Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem Rev 115:12888–12935. https://doi.org/10.1021/acs.chemrev.5b00370

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Lewis NS (2016) Research opportunities to advance solar energy utilization. Science (-80) 351:aad1920. https://doi.org/10.1126/science.aad1920

    CAS  Article  Google Scholar 

  28. 28.

    Niu K, Xu Y, Wang H et al (2017) A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production. Sci Adv 3:e1700921. https://doi.org/10.1126/sciadv.1700921

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Iizuka K, Wato T, Miseki Y et al (2011) Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J Am Chem Soc 133:20863–20868. https://doi.org/10.1021/ja207586e

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed Engl 52:7372–7408. https://doi.org/10.1002/anie.201207199

    CAS  Article  Google Scholar 

  31. 31.

    Wang S, Yao W, Lin J et al (2014) Cobalt imidazolate metal-organic frameworks photosplit CO(2) under mild reaction conditions. Angew Chem Int Ed Engl 53:1034–1038. https://doi.org/10.1002/anie.201309426

    CAS  Article  Google Scholar 

  32. 32.

    Gao C, Meng Q, Zhao K et al (2016) CO3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Adv Mater 28:6485–6490. https://doi.org/10.1002/adma.201601387

    CAS  Article  Google Scholar 

  33. 33.

    Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059. https://doi.org/10.1039/c2ee21234j

    CAS  Article  Google Scholar 

  34. 34.

    Loiudice A, Lobaccaro P, Kamali EA et al (2016) Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew Chem Int Ed Engl 55:5789–5792. https://doi.org/10.1002/anie.201601582

    CAS  Article  Google Scholar 

  35. 35.

    Jhong HR, Ma SC, Kenis PJA (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2:191–199. https://doi.org/10.1016/j.coche.2013.03.005

    Article  Google Scholar 

  36. 36.

    Schneider J, Jia H, Muckerman JT, Fujita E (2012) Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem Soc Rev 41:2036–2051. https://doi.org/10.1039/c1cs15278e

    CAS  Article  Google Scholar 

  37. 37.

    Liu WF, Hou YH, Hou BX, Zhao ZP (2014) Enzyme-catalyzed sequential reduction of carbon dioxide to formaldehyde. Chin J Chem Eng 22:1328–1332. https://doi.org/10.1016/j.cjche.2014.09.026

    CAS  Article  Google Scholar 

  38. 38.

    Luis P, Van Gerven T, Van der Bruggen B (2012) Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci 38:419–448. https://doi.org/10.1016/j.pecs.2012.01.004

    CAS  Article  Google Scholar 

  39. 39.

    Rubin ES, Mantripragada H, Marks A et al (2012) The outlook for improved carbon capture technology. Prog Energy Combust Sci 38:630–671. https://doi.org/10.1016/j.pecs.2012.03.003

    CAS  Article  Google Scholar 

  40. 40.

    Chiranjeevi P, Bulut M, Breugelmans T et al (2019) Current trends in enzymatic electrosynthesis for CO2 reduction. Curr Opin Green Sustain Chem. https://doi.org/10.1016/j.cogsc.2019.02.007

    Article  Google Scholar 

  41. 41.

    Zhang L, Ong J, Liu J, Li SFY (2017) Enzymatic electrosynthesis of formate from CO2 reduction in a hybrid biofuel cell system. Renew Energy. https://doi.org/10.1016/j.renene.2017.03.009

    Article  Google Scholar 

  42. 42.

    Esen H, Alpdağtaş S, Mervan Çakar M, Binay B (2019) Tailoring of recombinant FDH: effect of histidine tag location on solubility and catalytic properties of Chaetomium thermophilum formate dehydrogenase (CtFDH). Prep Biochem Biotechnol 49:529–534. https://doi.org/10.1080/10826068.2019.1599394

    CAS  Article  Google Scholar 

  43. 43.

    Dominguez-Benetton X, Srikanth S, Satyawali Y et al (2013) Enzymatic electrosynthesis: an overview on the progress in enzyme-electrodes for the production of electricity, fuels and chemicals. J Microb Biochem Technol. https://doi.org/10.4172/1948-5948.S6-007

    Article  Google Scholar 

  44. 44.

    Wu R, Ma C, Zhu Z (2020) Enzymatic electrosynthesis as an emerging electrochemical synthesis platform. Curr Opin Electrochem 19:1–7

    CAS  Article  Google Scholar 

  45. 45.

    Shi J, Jiang Y, Jiang Z et al (2015) Enzymatic conversion of carbon dioxide. Chem Soc Rev 44:5981–6000. https://doi.org/10.1039/c5cs00182j

    CAS  Article  Google Scholar 

  46. 46.

    Zheng Y, Zhang WQ, Li YF et al (2017) Energy related CO2 conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy 40:512–539. https://doi.org/10.1016/j.nanoen.2017.08.049

    CAS  Article  Google Scholar 

  47. 47.

    Zhang YT, Zhang L, Chen HL, Zhang HM (2010) Selective separation of low concentration CO2 using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chem Eng Sci 65:3199–3207. https://doi.org/10.1016/j.ces.2010.02.010

    CAS  Article  Google Scholar 

  48. 48.

    Hwang ET, Gang H, Chung J, Gu MB (2012) Carbonic anhydrase assisted calcium carbonate crystalline composites as a biocatalyst. Green Chem 14:2216–2220. https://doi.org/10.1039/c2gc35444f

    CAS  Article  Google Scholar 

  49. 49.

    Forsyth C, Yip TW, Patwardhan SV (2013) CO2 sequestration by enzyme immobilized onto bioinspired silica. Chem Commun 49:3191–3193. https://doi.org/10.1039/c2cc38225c

    CAS  Article  Google Scholar 

  50. 50.

    Vinoba M, Bhagiyalakshmi M, Grace AN et al (2013) CO2 absorption and sequestration as various polymorphs of CaCO3 using sterically hindered amine. Langmuir 29:15655–15663. https://doi.org/10.1021/la403671y

    CAS  Article  Google Scholar 

  51. 51.

    Annunziato G, Angeli A, D’Alba F et al (2016) Discovery of new potential anti-infective compounds based on carbonic anhydrase inhibitors by rational target-focused repurposing approaches. ChemMedChem. https://doi.org/10.1002/cmdc.201600180

    Article  Google Scholar 

  52. 52.

    Kanth BK, Lee J, Pack SP (2013) Carbonic anhydrase: Its biocatalytic mechanisms and functional properties for efficient CO2 capture process development. Eng Life Sci 13:422–431. https://doi.org/10.1002/elsc.201200157

    CAS  Article  Google Scholar 

  53. 53.

    Jo BH, Kim IG, Seo JH et al (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Env Microbiol 79:6697–6705. https://doi.org/10.1128/AEM.02400-13

    CAS  Article  Google Scholar 

  54. 54.

    Savile CK, Lalonde JJ (2011) Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 22:818–823. https://doi.org/10.1016/j.copbio.2011.06.006

    CAS  Article  Google Scholar 

  55. 55.

    Wu Z, Nan Y, Zhao Y et al (2020) Immobilization of carbonic anhydrase for facilitated CO2 capture and separation. Chin J Chem Eng 28:2817–2831. https://doi.org/10.1016/j.cjche.2020.06.002

    Article  Google Scholar 

  56. 56.

    Zhang S, Lu H, Lu Y (2013) Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution. Env Sci Technol 47:13882–13888. https://doi.org/10.1021/es4031744

    CAS  Article  Google Scholar 

  57. 57.

    Glueck SM, Gumus S, Fabian WM, Faber K (2010) Biocatalytic carboxylation. Chem Soc Rev 39:313–328. https://doi.org/10.1039/b807875k

    CAS  Article  Google Scholar 

  58. 58.

    Miyazaki M, Shibue M, Ogino K et al (2001) Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide. Chem Commun. https://doi.org/10.1039/b104873m

    Article  Google Scholar 

  59. 59.

    Tong X, El-Zahab B, Zhao X et al (2011) Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol Bioeng 108:465–469. https://doi.org/10.1002/bit.22938

    CAS  Article  Google Scholar 

  60. 60.

    Thauer RK (2007) Microbiology. A fifth pathway of carbon fixation. Science (80-) 318:1732–1733. https://doi.org/10.1126/science.1152209

    CAS  Article  Google Scholar 

  61. 61.

    Castillo R, Oliva M, Marti S, Moliner V (2008) A theoretical study of the catalytic mechanism of formate dehydrogenase. J Phys Chem B 112:10012–10022. https://doi.org/10.1021/jp8025896

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Yadav RK, Baeg JO, Oh GH et al (2012) A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. J Am Chem Soc 134:11455–11461. https://doi.org/10.1021/ja3009902

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Gan L, Jennings D, Laureanti J, Jones AK (2015) Biomimetic complexes for production of dihydrogen and reduction of CO2. Top Organomet Chem 59:233–272. https://doi.org/10.1007/3418_2015_146

    CAS  Article  Google Scholar 

  64. 64.

    Hille R, Young T, Niks D et al (2020) Structure: function studies of the cytosolic, Mo- and NAD+-dependent formate dehydrogenase from Cupriavidus necator. Inorganics 8(7):41

    CAS  Article  Google Scholar 

  65. 65.

    Obert R, Dave BC (1999) Enzymatic conversion of carbon dioxide to methanol: enhanced methanol production in silica sol−gel matrices. J Am Chem Soc 121:12192–12193. https://doi.org/10.1021/ja991899r

    CAS  Article  Google Scholar 

  66. 66.

    Aresta M, Dibenedetto A, Angelini A (2013) The changing paradigm in CO2 utilization. J CO2 Util 3–4:65–73. https://doi.org/10.1016/j.jcou.2013.08.001

    CAS  Article  Google Scholar 

  67. 67.

    Dibenedetto A, Stufano P, Macyk W et al (2012) Hybrid technologies for an enhanced carbon recycling based on the enzymatic reduction of CO2 to methanol in water: chemical and photochemical NADH regeneration. Chemsuschem 5:373–378. https://doi.org/10.1002/cssc.201100484

    CAS  Article  Google Scholar 

  68. 68.

    Wang XL, Li Z, Shi JF et al (2014) Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction. Acs Catal 4:962–972. https://doi.org/10.1021/cs401096c

    CAS  Article  Google Scholar 

  69. 69.

    Schuchmann K, Muller V (2013) Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase. Science (80-) 342:1382–1385. https://doi.org/10.1126/science.1244758

    CAS  Article  Google Scholar 

  70. 70.

    Beller M, Bornscheuer UT (2014) CO(2) fixation through hydrogenation by chemical or enzymatic methods. Angew Chem Int Ed Engl 53:4527–4528. https://doi.org/10.1002/anie.201402963

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Ceccaldi P, Schuchmann K, Müller V, Elliott SJ (2017) The Hydrogen dependent CO2 reductase: the first completely co tolerant fefe-hydrogenase. Energy Environ Sci 10:503–508. https://doi.org/10.1039/c6ee02494g

    CAS  Article  Google Scholar 

  72. 72.

    Jeoung JH, Dobbek H (2007) Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase. Science (-80) 318:1461–1464. https://doi.org/10.1126/science.1148481

    CAS  Article  Google Scholar 

  73. 73.

    Bachmeier A, Wang VC, Woolerton TW et al (2013) How light-harvesting semiconductors can alter the bias of reversible electrocatalysts in favor of H2 production and CO2 reduction. J Am Chem Soc 135:15026–15032. https://doi.org/10.1021/ja4042675

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Appel AM, Bercaw JE, Bocarsly AB et al (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658. https://doi.org/10.1021/cr300463y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Woolerton TW, Sheard S, Reisner E et al (2010) Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light. J Am Chem Soc 132:2132–2133. https://doi.org/10.1021/ja910091z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Chaudhary YS, Woolerton TW, Allen CS et al (2012) Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals. Chem Commun 48:58–60. https://doi.org/10.1039/c1cc16107e

    CAS  Article  Google Scholar 

  77. 77.

    Seefeldt LC, Rasche ME, Ensign SA (1995) Carbonyl sulfide and carbon dioxide as new substrates, and carbon disulfide as a new inhibitor, of nitrogenase. Biochemistry 34:5382–5389. https://doi.org/10.1021/bi00016a009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Seefeldt LC, Yang ZY, Lukoyanov DA et al (2020) Reduction of substrates by nitrogenases. Chem Rev 120:5082–5106. https://doi.org/10.1021/acs.chemrev.9b00556

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Yang ZY, Moure VR, Dean DR, Seefeldt LC (2012) Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase. Proc Natl Acad Sci USA 109:19644–19648. https://doi.org/10.1073/pnas.1213159109

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Masepohl B, Forchhammer K (2007) Regulatory cascades to express nitrogenases. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle, pp 131–145

    Chapter  Google Scholar 

  81. 81.

    Xu S, Lu Y, Li J et al (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate−silica (ALG−SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573. https://doi.org/10.1021/ie051407l

    CAS  Article  Google Scholar 

  82. 82.

    Sultana S, Sahoo PC, Martha S, Parida K (2016) A review of harvesting clean fuels from enzymatic CO2 reduction. Rsc Adv 6:44170–44194. https://doi.org/10.1039/c6ra05472b

    CAS  Article  Google Scholar 

  83. 83.

    Shin W, Lee SHP, Shin JW et al (2003) Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica. J Am Chem Soc 125:14688–14689. https://doi.org/10.1021/ja037370i

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Parkin A, Seravalli J, Vincent KA et al (2007) Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J Am Chem Soc 129:10328–10329. https://doi.org/10.1021/ja073643o

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Woolerton TW, Sheard S, Pierce E et al (2011) CO2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy Environ Sci 4:2393–2399. https://doi.org/10.1039/c0ee00780c

    CAS  Article  Google Scholar 

  86. 86.

    Ruschig U, Muller U, Willnow P, Hopner T (1976) CO2 reduction to formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus. Eur J Biochem 70:325–330. https://doi.org/10.1111/j.1432-1033.1976.tb11021.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Parkinson BA, Weaver PF (1984) Photoelectrochemical pumping of enzymatic CO2 reduction. Nature 309:148–149. https://doi.org/10.1038/309148a0

    CAS  Article  Google Scholar 

  88. 88.

    Choe H, Joo JC, Cho DH, et al (2014) Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas. PLoS One 9:e103111. https://doi.org/10.1371/journal.pone.0103111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Lu Y, Jiang Z, Xu S, Wu H (2006) Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate–silica hybrid gel. Catal Today 115:263–268. https://doi.org/10.1016/j.cattod.2006.02.056

    CAS  Article  Google Scholar 

  90. 90.

    Wang YZ, Li MF, Zhao ZP, Liu WF (2015) Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions. J Mol Catal B 116:89–94. https://doi.org/10.1016/j.molcatb.2015.03.014

    CAS  Article  Google Scholar 

  91. 91.

    Miyatani R, Amao Y (2004) Photochemical synthesis of formic acid from CO2 with formate dehydrogenase and water-soluble zinc porphyrin. J Mol Catal B 27:121–125. https://doi.org/10.1016/j.molcatb.2003.11.003

    CAS  Article  Google Scholar 

  92. 92.

    Amao Y, Shuto N, Furuno K et al (2012) Artificial leaf device for solar fuel production. Faraday Discuss 155:289–308. https://doi.org/10.1039/c1fd00097g

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Yadav RK, Baeg J-O, Kumar A et al (2014) Graphene–BODIPY as a photocatalyst in the photocatalytic–biocatalytic coupled system for solar fuel production from CO2. J Mater Chem A 2:5068–5076

    CAS  Article  Google Scholar 

  94. 94.

    Hartmann T, Leimkuhler S (2013) The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate. FEBS J 280:6083–6096. https://doi.org/10.1111/febs.12528

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Bassegoda A, Madden C, Wakerley DW et al (2014) Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J Am Chem Soc 136:15473–15476. https://doi.org/10.1021/ja508647u

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Reda T, Plugge CM, Abram NJ, Hirst J (2008) Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci USA 105:10654–10658. https://doi.org/10.1073/pnas.0801290105

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Alissandratos A, Kim HK, Matthews H et al (2013) Clostridium carboxidivorans strain P7T recombinant formate dehydrogenase catalyzes reduction of CO(2) to formate. Appl Env Microbiol 79:741–744. https://doi.org/10.1128/AEM.02886-12

    CAS  Article  Google Scholar 

  98. 98.

    Aslan AS, Valjakka J, Ruupunen J et al (2016) Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3) to formate. Protein Eng Des Sel 30:47–55

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Altas N, Aslan AS, Karatas E et al (2017) Heterologous production of extreme alkaline thermostable NAD(+)-dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila. Process Biochem 61:110–118. https://doi.org/10.1016/j.procbio.2017.06.017

    CAS  Article  Google Scholar 

  100. 100.

    Shi J, Wang X, Jiang Z et al (2012) Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion. Bioresour Technol 118:359–366. https://doi.org/10.1016/j.biortech.2012.04.099

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Amao Y, Watanabe T (2007) Photochemical and enzymatic synthesis of methanol from formaldehyde with alcohol dehydrogenase from Saccharomyces cerevisiae and water-soluble zinc porphyrin. J Mol Catal B 44:27–31. https://doi.org/10.1016/j.molcatb.2006.08.001

    CAS  Article  Google Scholar 

  102. 102.

    Kuwabata S, Tsuda R, Yoneyama H (1994) Electrochemical conversion of carbon-dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts. J Am Chem Soc 116:5437–5443. https://doi.org/10.1021/ja00091a056

    CAS  Article  Google Scholar 

  103. 103.

    Luo J, Meyer AS, Mateiu RV, Pinelo M (2015) Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. N Biotechnol 32:319–327. https://doi.org/10.1016/j.nbt.2015.02.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Jiang YJ, Sun QY, Zhang L, Jiang ZY (2009) Capsules-in-bead scaffold: a rational architecture for spatially separated multienzyme cascade system. J Mater Chem 19:9068–9074. https://doi.org/10.1039/b914268a

    CAS  Article  Google Scholar 

  105. 105.

    El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng 99:508–514

    CAS  Article  Google Scholar 

  106. 106.

    Ji X, Su Z, Wang P et al (2015) Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano 9:4600–4610. https://doi.org/10.1021/acsnano.5b01278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Cazelles R, Drone J, Fajula F et al (2013) Reduction of CO2 to methanol by a polyenzymatic system encapsulated in phospholipids–silica nanocapsules. New J Chem 37:3721–3730. https://doi.org/10.1039/c3nj00688c

    CAS  Article  Google Scholar 

  108. 108.

    Liu J, Cazelles R, Chen ZP et al (2014) The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Phys Chem Chem Phys 16:14699–14705. https://doi.org/10.1039/c4cp01348d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Aresta M, Dibenedetto A, Baran T et al (2014) An integrated photocatalytic/enzymatic system for the reduction of CO2 to methanol in bioglycerol-water. Beilstein J Org Chem 10:2556–2565. https://doi.org/10.3762/bjoc.10.267

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Yadav RK, Oh GH, Park NJ et al (2014) Highly selective solar-driven methanol from CO2 by a photocatalyst/biocatalyst integrated system. J Am Chem Soc 136:16728–16731. https://doi.org/10.1021/ja509650r

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Addo PK, Arechederra RL, Waheed A et al (2011) Methanol production via bioelectrocatalytic reduction of carbon dioxide: role of carbonic anhydrase in improving electrode performance. Electrochem Solid State Lett 14:E9–E13. https://doi.org/10.1149/1.3537463

    CAS  Article  Google Scholar 

  112. 112.

    Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74:1–20. https://doi.org/10.1016/S0163-7258(96)00198-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Jensen EL, Clement R, Kosta A et al (2019) A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J 13:2094–2106. https://doi.org/10.1038/s41396-019-0426-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Del Prete S, Nocentini A, Supuran CT, Capasso C (2020) Bacterial ι-carbonic anhydrase: a new active class of carbonic anhydrase identified in the genome of the Gram-negative bacterium Burkholderia territorii. J Enzyme Inhib Med Chem 35:1060–1068. https://doi.org/10.1080/14756366.2020.1755852

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7:168–181. https://doi.org/10.1038/nrd2467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. 116.

    De Simone G, Monti SM, Alterio V et al (2015) Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic Med Chem Lett 25:2002–2006. https://doi.org/10.1016/j.bmcl.2015.02.068

    CAS  Article  Google Scholar 

  117. 117.

    Ferraroni M, Del Prete S, Vullo D et al (2015) Crystal structure and kinetic studies of a tetrameric type II β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Acta Crystallogr Sect D 71:2449–2456. https://doi.org/10.1107/S1399004715018635

    CAS  Article  Google Scholar 

  118. 118.

    Supuran CT, Capasso C (2020) Antibacterial carbonic anhydrase inhibitors: an update on the recent literature. Expert Opin Ther Pat 30:963–982. https://doi.org/10.1080/13543776.2020.1811853

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Jonsson BH, Liljas A (2020) Perspectives on the classical enzyme carbonic anhydrase and the search for inhibitors. Biophys J 119:1275–1280. https://doi.org/10.1016/j.bpj.2020.08.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Lee SW, Bin PS, Jeong SK et al (2010) On carbon dioxide storage based on biomineralization strategies. Micron 41:273–282. https://doi.org/10.1016/j.micron.2009.11.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Sharma T, Sharma S, Kamyab H, Kumar A (2020) Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: a review. J Clean Prod 247:119138. https://doi.org/10.1016/j.jclepro.2019.119138

    CAS  Article  Google Scholar 

  122. 122.

    Supuran CT, Capasso C (2017) An overview of the bacterial carbonic anhydrases. Metabolites. https://doi.org/10.3390/metabo7040056

    Article  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Tomar JS, Shen J (2020) Characterization of carbonic anhydrase in vivo using magnetic resonance spectroscopy. Int J Mol Sci. https://doi.org/10.3390/ijms21072442

    Article  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Cuffaro D, Nuti E, Rossello A (2020) An overview of carbohydrate-based carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 35:1906–1922. https://doi.org/10.1080/14756366.2020.1825409

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Mboge MY, Mahon BP, McKenna R, Frost SC (2018) Carbonic anhydrases: role in pH control and cancer. Metabolites. https://doi.org/10.3390/metabo8010019

    Article  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Env Microbiol 54:397–404. https://doi.org/10.1128/AEM.54.2.397-404.1988

    CAS  Article  Google Scholar 

  127. 127.

    Chu S (2009) Carbon capture and sequestration. Science (80-) 325:1599. https://doi.org/10.1126/science.1181637

    CAS  Article  Google Scholar 

  128. 128.

    Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46:921–926

    CAS  Article  Google Scholar 

  129. 129.

    Ye X, Lu Y (2014) CO2 absorption into catalyzed potassium carbonate–bicarbonate solutions: kinetics and stability of the enzyme carbonic anhydrase as a biocatalyst. Chem Eng Sci 116:567–575. https://doi.org/10.1016/j.ces.2014.05.040

    CAS  Article  Google Scholar 

  130. 130.

    Bond GM, Stringer J, Brandvold DK et al (2001) Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuels 15:309–316. https://doi.org/10.1021/ef000246p

    CAS  Article  Google Scholar 

  131. 131.

    Supuran CT, Scozzafava A, Casini A (2003) Carbonic anhydrase inhibitors. Med Res Rev 23:146–189. https://doi.org/10.1002/med.10025

    CAS  Article  Google Scholar 

  132. 132.

    Daigle R, Desrochers M (2009) Carbonic anhydrase having increased stability under high temperature conditions

  133. 133.

    Ramanan R, Kannan K, Vinayagamoorthy N et al (2009) Purification and characterization of a novel plant-type carbonic anhydrase from Bacillus subtilis. Biotechnol Bioprocess Eng 14:32–37. https://doi.org/10.1007/s12257-008-0099-z

    CAS  Article  Google Scholar 

  134. 134.

    Gundersen MT, von Solms N, Woodley JM (2014) Enzymatically assisted CO2 removal from flue-gas. In: 12th Int Conf Greenh Gas Control Technol Ghgt-12 63:624–632. https://doi.org/10.1016/j.egypro.2014.11.067

    CAS  Article  Google Scholar 

  135. 135.

    Dalby PA, Ward JM, Hailes HC (2012) 7.17 C-X bond formation: C-C bond formation using TDP-dependent enzymes. Elsevier Ltd., Amsterdam

    Google Scholar 

  136. 136.

    Candy JM, Duggleby RG (1998) Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme. Biochim Biophys Acta 1385:323–338. https://doi.org/10.1016/S0167-4838(98)00077-6

  137. 137.

    Chandra Raj K, Ingram LO, Maupin-Furlow JA (2001) Pyruvate decarboxylase: a key enzyme for the oxidative metabolism of lactic acid by Acetobacter pasteurianus. Arch Microbiol 176:443–451. https://doi.org/10.1007/s002030100348

    CAS  Article  Google Scholar 

  138. 138.

    Wilding M, Goodall M, Micklefield J (2012) 7.19 C-X bond formation: enzymatic enantioselective decarboxylative protonation and C-C bond formation. Elsevier Ltd., Amsterdam

    Google Scholar 

  139. 139.

    Furey W, Arjunan P, Chen L et al (1998) Structure-function relationships and flexible tetramer assembly in pyruvate decarboxylase revealed by analysis of crystal structures. Biochim Biophys Acta 1385:253–270. https://doi.org/10.1016/S0167-4838(98)00073-9

    CAS  Article  Google Scholar 

  140. 140.

    Oliver AL, Anderson BN, Roddick FA (1999) Factors affecting the production of L-phenylacetylcarbinol by yeast: a case study. Adv Microb Physiol 41:1–45

    CAS  Article  Google Scholar 

  141. 141.

    Pei XY, Erixon KM, Luisi BF, Leeper FJ (2010) Structural insights into the prereaction state of pyruvate decarboxylase from zymomonas mobilise. Biochemistry 49:1727–1736. https://doi.org/10.1021/bi901864j

    CAS  Article  Google Scholar 

  142. 142.

    Kutter S, Weiss MS, Wille G et al (2009) Covalently bound substrate at the regulatory site of yeast pyruvate decarboxylases triggers allosteric enzyme activation. J Biol Chem 284:12136–12144. https://doi.org/10.1074/jbc.M806228200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. 143.

    Lie MA, Celik L, Jørgensen KA, Schiøtt B (2005) Cofactor activation and substrate binding in pyruvate decarboxylase. Insights into the reaction mechanism from molecular dynamics simulations. Biochemistry 44:14792–14806. https://doi.org/10.1021/bi051134y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Kluger R (1987) Thiamin diphosphate: a mechanistic update on enzymic and nonenzymic catalysis of decarboxylation. Chem Rev 87:863–876

    CAS  Article  Google Scholar 

  145. 145.

    Fessner WD (1998) Enzyme mediated C-C bond formation. Curr Opin Chem Biol 2:85–97. https://doi.org/10.1016/s1367-5931(98)80040-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. 146.

    Schorken U, Sprenger GA (1998) Thiamin-dependent enzymes as catalysts in chemoenzymatic syntheses. Biochim Biophys Acta 1385:229–243. https://doi.org/10.1016/S0167-4838(98)00071-5

    CAS  Article  Google Scholar 

  147. 147.

    Sprenger GA, Pohl M (1999) Synthetic potential of thiamin diphosphate-dependent enzymes. J Mol Catal B 6:145–159. https://doi.org/10.1016/S1381-1177(98)00107-6

    CAS  Article  Google Scholar 

  148. 148.

    Foppen MAE, Delange YM, Vanrantwijk F et al (1990) Reversal of an enzymatic decarboxylation—Thiamin mediated carboxylation of acetaldehyde into pyruvic-acid. Recl Des Trav Chim Des Pays-Bas-J R Netherlands Chem Soc 109:359–360

    CAS  Article  Google Scholar 

  149. 149.

    Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta BBA 1784:1873–1898

    CAS  Article  Google Scholar 

  150. 150.

    Dobbek H, Gremer L, Kiefersauer R et al (2002) Catalysis at a dinuclear [CuSMo(==O)OH] cluster in a CO dehydrogenase resolved at 1.1-A resolution. Proc Natl Acad Sci USA 99:15971–15976. https://doi.org/10.1073/pnas.212640899

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Rovaletti A, Bruschi M, Moro G et al (2019) The challenging in silico description of carbon monoxide oxidation as catalyzed by molybdenum-copper CO dehydrogenase. Front Chem. https://doi.org/10.3389/fchem.2018.00630

    Article  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Rokhsana D, Large TAG, Dienst MC et al (2016) A realistic in silico model for structure/function studies of molybdenum–copper CO dehydrogenase. J Biol Inorg Chem 21:491–499. https://doi.org/10.1007/s00775-016-1359-6

    CAS  Article  Google Scholar 

  153. 153.

    Riordan CG (2004) Bioorganometallic chemistry of cobalt and nickel. Compr Coord Chem II 8:677–713. https://doi.org/10.1016/B0-08-043748-6/08176-7

    CAS  Article  Google Scholar 

  154. 154.

    Zhang B, Hemann CF, Hille R (2010) Kinetic and spectroscopic studies of the molybdenum-copper CO dehydrogenase from Oligotropha carboxidovorans. J Biol Chem 285:12571–12578. https://doi.org/10.1074/jbc.M109.076851

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Alpdagtas S, Binay B (2020) Nadp+-dependent formate dehydrogenase: a review. Biocatal Biotransformation 0:1–9. https://doi.org/10.1080/10242422.2020.1865933

    CAS  Article  Google Scholar 

  156. 156.

    Nielsen CF, Lange L, Meyer AS (2019) Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 37:107408. https://doi.org/10.1016/j.biotechadv.2019.06.007

    CAS  Article  Google Scholar 

  157. 157.

    Hille R, Young T, Niks D et al (2020) Structure: function studies of the cytosolic, Mo- and NAD+-dependent formate dehydrogenase from Cupriavidus necator. Inorganics 8:41–54

    CAS  Article  Google Scholar 

  158. 158.

    Crable BR, Plugge CM, McInerney MJ, Stams AJ (2011) Formate formation and formate conversion in biological fuels production. Enzyme Res 2011:532536. https://doi.org/10.4061/2011/532536

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Muller U, Willnow P, Ruschig U, Hopner T (1978) Formate dehydrogenase from Pseudomonas oxalaticus. Eur J Biochem 83:485–498. https://doi.org/10.1111/j.1432-1033.1978.tb12115.x

    CAS  Article  Google Scholar 

  160. 160.

    Miyatani R, Amao Y (2002) Bio-CO2 fixation with formate dehydrogenase from Saccharomyces cerevisiae and water-soluble zinc porphyrin by visible light. Biotechnol Lett 24:1931–1934. https://doi.org/10.1023/A:1020912527723

    CAS  Article  Google Scholar 

  161. 161.

    Kim S, Lee GY, Lee J et al (2013) Efficient electrochemical regeneration of nicotinamide cofactors using a cyclopentadienyl-rhodium complex on functionalized indium tin oxide electrodes. Electrochim Acta 96:141–146. https://doi.org/10.1016/j.electacta.2013.02.074

    CAS  Article  Google Scholar 

  162. 162.

    de Bok FA, Hagedoorn PL, Silva PJ et al (2003) Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270:2476–2485. https://doi.org/10.1046/j.1432-1033.2003.03619.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Hartmann T, Schwanhold N, Leimkuhler S (2015) Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria. Biochim Biophys Acta 1854:1090–1100. https://doi.org/10.1016/j.bbapap.2014.12.006

    CAS  Article  Google Scholar 

  164. 164.

    Mesentsev AV, Ustinnikova TB, Tikhonova TV, Popov VO (1996) Isolation and the kinetic mechanism of NAD-dependent formate dehydrogenase from methylotrophic yeast Hansenula polymorpha. Appl Biochem Microbiol 32:529–534

    Google Scholar 

  165. 165.

    Filippova EV, Polyakov KM, Tikhonova TV et al (2005) Structure of a new crystal modification of the bacterial NAD-dependent formate dehydrogenase with a resolution of 2.1 angstrom. Crystallogr Reports 50:796–800. https://doi.org/10.1134/1.2049398

    CAS  Article  Google Scholar 

  166. 166.

    Shabalin IG, Polyakov KM, Tishkov VI, Popov VO (2009) Atomic resolution crystal structure of NAD(+)-dependent formate dehydrogenase from Bacterium Moraxella sp. C-1. Acta Naturae 1:89–93

    CAS  Article  Google Scholar 

  167. 167.

    Dobbek H (2011) Structural aspects of mononuclear Mo/W-enzymes. Coord Chem Rev 255:1104–1116. https://doi.org/10.1016/j.ccr.2010.11.017

    CAS  Article  Google Scholar 

  168. 168.

    Dong G, Ryde U (2018) Reaction mechanism of formate dehydrogenase studied by computational methods. J Biol Inorg Chem. https://doi.org/10.1007/s00775-018-1608-y

    Article  Google Scholar 

  169. 169.

    Maia LB, Moura JJ, Moura I (2015) Molybdenum and tungsten-dependent formate dehydrogenases. J Biol Inorg Chem 20:287–309. https://doi.org/10.1007/s00775-014-1218-2

    CAS  Article  Google Scholar 

  170. 170.

    Kim S, Kim MK, Lee SH et al (2014) Conversion of CO2 to formate in an electroenzymatic cell using Candida boidinii formate dehydrogenase. J Mol Catal B 102:9–15. https://doi.org/10.1016/j.molcatb.2014.01.007

    CAS  Article  Google Scholar 

  171. 171.

    Schuchmann K, Vonck J, Müller V (2016) A bacterial hydrogen-dependent CO2 reductase forms filamentous structures. FEBS J 283:1311–1322

    CAS  Article  Google Scholar 

  172. 172.

    Zezzi do Valle Gomes M, Palmqvist AEC (2018) Immobilization of formaldehyde dehydrogenase in tailored siliceous mesostructured cellular foams and evaluation of its activity for conversion of formate to formaldehyde. Colloids Surf B 163:41–46. https://doi.org/10.1016/j.colsurfb.2017.11.069

    CAS  Article  Google Scholar 

  173. 173.

    Pereira IA (2013) An enzymatic route to H2 storage. Science (80-) 342:1329–1330. https://doi.org/10.1126/science.1247698

    CAS  Article  Google Scholar 

  174. 174.

    Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832

    CAS  Article  Google Scholar 

  175. 175.

    Bruant G, Levesque MJ, Peter C et al (2010) Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7. PLoS ONE 5:e13033. https://doi.org/10.1371/journal.pone.0013033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Alissandratos A, Kim HK, Easton CJ (2013) Formate production through biocatalysis. Bioengineered 4:348–350. https://doi.org/10.4161/bioe.25360

    Article  PubMed  PubMed Central  Google Scholar 

  177. 177.

    Johnson MK, Rees DC, Adams MW (1996) Tungstoenzymes. Chem Rev 96:2817–2840. https://doi.org/10.1021/cr950063d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Kletzin A, Adams MW (1996) Tungsten in biological systems. FEMS Microbiol Rev 18:5–63. https://doi.org/10.1016/0168-6445(95)00025-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. 179.

    da Silva SM, Pimentel C, Valente FM et al (2011) Tungsten and molybdenum regulation of formate dehydrogenase expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 193:2909–2916. https://doi.org/10.1128/JB.00042-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Xu SW, Lu Y, Li J et al (2006) Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel. Ind Eng Chem Res 45:4567–4573. https://doi.org/10.1021/ie051407l

    CAS  Article  Google Scholar 

  181. 181.

    Alissandratos A, Easton CJ (2015) Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem 11:2370–2387. https://doi.org/10.3762/bjoc.11.259

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Srikanth S, Alvarez-Gallego Y, Vanbroekhoven K, Pant D (2017) Enzymatic electrosynthesis of formic acid through carbon dioxide reduction in a bioelectrochemical system: effect of immobilization and carbonic anhydrase addition. ChemPhysChem 18:3174–3181. https://doi.org/10.1002/cphc.201700017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Zhang LJ, Ong J, Liu JY, Li SFY (2017) Enzymatic electrosynthesis of formate from CO2 reduction in a hybrid biofuel cell system. Renew Energy 108:581–588. https://doi.org/10.1016/j.renene.2017.03.009

    CAS  Article  Google Scholar 

  184. 184.

    Hummel W, Groger H (2014) Strategies for regeneration of nicotinamide coenzymes emphasizing self-sufficient closed-loop recycling systems. J Biotechnol 191:22–31. https://doi.org/10.1016/j.jbiotec.2014.07.449

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  185. 185.

    van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol 14:421–426. https://doi.org/10.1016/s0958-1669(03)00094-6

    Article  PubMed  PubMed Central  Google Scholar 

  186. 186.

    Zhang Y, Gao F, Zhang SP et al (2011) Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Bioresour Technol 102:1837–1843. https://doi.org/10.1016/j.biortech.2010.09.069

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  187. 187.

    Marpani F, Pinelo M, Meyer AS (2017) Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: quantitative comparison of efficiencies of immobilized enzyme systems. Biochem Eng J 127:217–228. https://doi.org/10.1016/j.bej.2017.08.011

    CAS  Article  Google Scholar 

  188. 188.

    Marpani F, Sarossy Z, Pinelo M, Meyer AS (2017) Kinetics based reaction optimization of enzyme catalyzed reduction of formaldehyde to methanol with synchronous cofactor regeneration. Biotechnol Bioeng 114:2762–2770. https://doi.org/10.1002/bit.26405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  189. 189.

    Werpy T, Petersen G, Aden A, et al (2004) Top value added chemicals from biomass. Volume 1—Results of screening for potential candidates from sugars and synthesis gas. Department of Energy Washington DC

  190. 190.

    Ganesh I (2014) Conversion of carbon dioxide into methanol—a potential liquid fuel: fundamental challenges and opportunities (a review). Renew Sustain Energy Rev 31:221–257. https://doi.org/10.1016/j.rser.2013.11.045

    CAS  Article  Google Scholar 

  191. 191.

    Kuwabata S, Nishida K, Tsuda R et al (2019) Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase. J Electrochem Soc 141:1498–1503. https://doi.org/10.1149/1.2054952

    Article  Google Scholar 

  192. 192.

    El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO(2) catalyzed by coimmobilized enzymes. Biotechnol Bioeng 99:508–514. https://doi.org/10.1002/bit.21584

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  193. 193.

    El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng. https://doi.org/10.1002/bit.21584

    Article  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Ren S, Wang Z, Bilal M et al (2020) Co-immobilization multienzyme nanoreactor with co-factor regeneration for conversion of CO2. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.03.177

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barış Binay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ünlü, A., Duman-Özdamar, Z.E., Çaloğlu, B. et al. Enzymes for Efficient CO2 Conversion. Protein J 40, 489–503 (2021). https://doi.org/10.1007/s10930-021-10007-8

Download citation

Keywords

  • CO2 capture technology
  • CO2 conversion
  • Enzymes
  • Cofactor regeneration
  • Biocatalysis