Skip to main content

Advertisement

Log in

Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Genetic manipulation of Escherichia coli influences the regulation of bacterial metabolism, which could be useful for the production of different targeted products. The RpoZ gene encodes for the ω subunit of the RNA polymerase (RNAP) and is involved in the regulation of the relA gene pathway. RelA is responsible for the production of guanosine pentaphosphate (ppGpp), which is a major alarmone in the stringent response. Expression of relA is reduced in the early hours of growth of RpoZ mutant E. coli. In the absence of the ω subunit, ppGpp affinity to RNAP is decreased; thus, rpoZ gene deleted E. coli strains show a modified stringent response. We used the E. coli K-12 MG1655 strain that lacks rpoZ (JEN202) to investigate the effect of the modified stringent response on recombinant protein production. However, the absence of the ω subunit results in diminished stability of the RNA polymerase at the promoter site. To avoid this, we used a deactivated CRISPR system that targets the ω subunit to upstream of the promoter site in the expression plasmid. The expression plasmid encodes for Chaetomium thermophilum formate dehydrogenase (CtFDH), a valuable enzyme for cofactor regeneration and CO2 reduction. A higher amount of CtFDH from the soluble fraction was purified from the JEN202 strain compared to the traditional BL21(DE3) method, thus offering a new strategy for batch-based recombinant enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mariani R, Maffioli S (2009) Bacterial RNA Polymerase Inhibitors: An Organized Overview of their Structure, Derivatives, Biological Activity and Current Clinical Development Status. Curr Med Chem 16:430–454

    Article  CAS  PubMed  Google Scholar 

  2. Gentry DR, Burgess RR (1989) rpoZ, encoding the omega subunit of Escherichia coli RNA polymerase, is in the same operon as spoT. J Bacteriol 171:1271–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gentry DR, Burgess RR (1993) Cross-Linking of Escherichia coli RNA Polymerase Subunits: Identification of β′ as the Binding Site of ω. Biochemistry 32:11224–11227

    Article  CAS  PubMed  Google Scholar 

  4. Barker MM, Gaal T, Josaitis CA, Gourse RL (2001) Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J Mol Biol 305:673–688

    Article  CAS  PubMed  Google Scholar 

  5. Chatterji D, Ogawa Y, Shimada T, Ishihama A (2007) The role of the omega subunit of RNA polymerase in expression of the relA gene in Escherichia coli. FEMS Microbiol Lett 267:51–55

    Article  CAS  PubMed  Google Scholar 

  6. Bhardwaj N, Syal K, Chatterji D (2018) The role of ω-subunit of Escherichia coli RNA polymerase in stress response. Genes Cells 23:357–369

    Article  CAS  PubMed  Google Scholar 

  7. Dove SL, Hochschild A (1998) Conversion of the ω subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev 12:745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in Genome Editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  9. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 80(337):816–821

    Article  Google Scholar 

  10. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tishkov VI, Popov VO (2004) Catalytic mechanism and application of formate dehydrogenase. Biochemistry 69(11):1252–1267

    CAS  PubMed  Google Scholar 

  13. Aslan AS, Valjakka J, Ruupunen J, Yildirim D, Turner NJ, Turunen O, Binay B (2017) Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3-) to formate. Protein Eng Des Sel 30:47–55

    CAS  PubMed  Google Scholar 

  14. Pala U, Yelmazer B, Çorbacıoğlu M, Ruupunen J, Valjakka J, Turunen O, Binay B (2018) Functional effects of active site mutations in NAD+-dependent formate dehydrogenases on transformation of hydrogen carbonate to formate. Protein Eng Des Sel 31:327–335

    Article  CAS  PubMed  Google Scholar 

  15. Nielsen CF, Lange L, Meyer AS (2019) Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.06.007

    Article  PubMed  Google Scholar 

  16. Ferrer-Miralles N, Domingo-Espín J, Corchero J, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bill RM (2014) Playing catch-up with escherichia coli: Using yeast to increase success rates in recombinant protein production experiments. Front Microbiol 5:85

    Article  PubMed  PubMed Central  Google Scholar 

  18. Olins PO, Devine CS, Rangwala SH, Kavka KS (1988) The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 73:227–235

    Article  CAS  PubMed  Google Scholar 

  19. Chen H, Bjerknes M, Kumar R, Jay E (1994) Determination of the optimal aligned spacing between the shine-dalgarno sequence and the translation initiation codon of escherichia coli m RNAs. Nucleic Acids Res 22:4953–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Esen H, Alpdağtaş S, Çakar MM, Binay B (2019) Tailoring of recombinant FDH: effect of histidine tag location on solubility and catalytic properties of Chaetomium thermophilum formate dehydrogenase (CtFDH). Prep Biochem Biotechnol 49:529–534

    Article  CAS  PubMed  Google Scholar 

  21. Chang AY, Chau VW, Landas JA, Pang Y (2017) Preparation of calcium competent Escherichia coli and heat-shock transformation. J Exp Microbiol Immunol 1:22–25

    Google Scholar 

  22. Sain B, Murray NE (1980) The hsd (host specificity) genes of E. coli K12. MGG Mol Gen Genet 180:35–46

    Article  CAS  PubMed  Google Scholar 

  23. Hodge G (2018) Points to Consider in Manufacturing Operations. In: Hodge G (ed) Biopharmaceutical Processing: Development, Design, and Implementation of Manufacturing Processes. Elsevier, Amsterdam, pp 987–998

    Chapter  Google Scholar 

  24. Ho HI, Fang JR, Cheung J, Wang HH (2020) Programmable CRISPR-Cas transcriptional activation in bacteria. Molecular systems biology. https://doi.org/10.15252/msb.20199427

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tishkov VI, Galkin AG, Fedorchuk VV, Savitsky PA, Rojkova AM, Gieren H, Kula MR (1999) Pilot scale production and isolation of recombinant NAD+-and NADP+-specific formate dehydrogenases. Biotechnol Bioeng 64:187–193

    Article  CAS  PubMed  Google Scholar 

  26. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: Advances and challenges. Front Microbiol 5:172

    PubMed  PubMed Central  Google Scholar 

  27. Waegeman H, De Lausnay S, Beauprez J, Maertens J, De Mey M, Soetaert W (2013) Increasing recombinant protein production in Escherichia coli K12 through metabolic engineering. N Biotechnol 30:255–261

    Article  CAS  PubMed  Google Scholar 

  28. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

  29. Duman ZE, Duraksoy BB, Aktaş F, Woodley JM, Binay B (2020) High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris. Enzyme Microb Technol. https://doi.org/10.1016/j.enzmictec.2020.109552

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project is funded partially by The Scientific and Technological Research Council of Turkey (TÜBİTAK) 2209-A undergraduate supporting program. We thank to Prof. Sedef Tunca Gedik of Gebze Technical University for her advice on the plasmid design. We would like to thank to David Bikard for sharing us the JEN202 strain.

Funding

This project was partially funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) 2209-A undergraduate supporting program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barış Binay.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical Approval

This study does not have any human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ar, E., Demiroğlu, A., Yılmaz, M.S. et al. Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology. Protein J 40, 504–511 (2021). https://doi.org/10.1007/s10930-021-09997-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09997-2

Keywords

Navigation