Skip to main content
Log in

Interaction of Native- and Oxidized-Low-Density Lipoprotein with Human Estrogen Sulfotransferase

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cytosolic estrogen sulfotransferase (SULT1E) mainly catalyzes the sulfate conjugation of estrogens, which decrease atherosclerosis progression. Recently we reported that a YKEG sequence in human SULT1E1 (hSULT1E1) corresponding to residues 61–64 can bind specifically to oxidized low-density lipoprotein (Ox-LDL), which plays a major role in the pathogenesis of atherosclerosis; its major oxidative lipid component lysophosphatidylcholine (LPC), and its structurally similar lipid, platelet-activating factor (PAF). In this study, we investigated the effect of Ox-LDL on the sulfating activity of hSULT1E1. In vivo experiments using a mouse model of atherosclerosis showed that the protein expression of SULT1E1 was higher in the aorta of mice with atherosclerosis compared with that in control animals. Results from a sulfating activity assay of hSULT1E1 using 1-hydroxypyrene as the substrate demonstrated that Ox-LDL, LPC, and PAF markedly decreased the sulfating activity of hSULT1E1, whereas native LDL and 1-palmitoyl-2-(5′-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC) as one of the oxidized phosphatidylcholines showed the opposite effect. The sulfating activity greatly changed in the presence of LPC, PAF, and POVPC in their concentration-dependen manner (especially above their critical micelle concentrations). Moreover, Ox-LDL specifically recognized dimeric hSULT1E1. These results suggest that the effects of Ox-LDL and native LDL on the sulfating activity of hSULT1E1 might be helpful in elucidating the novel mechanism underlying the pathogenesis of atherosclerosis, involving the relationship between estrogen metabolism, LDL, and Ox-LDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Falany C (1997) Enzymology of human cytosolic sulfotransferase. FASEB J 11:206–216. https://doi.org/10.1096/fasebj.11.4.9068609

    Article  CAS  PubMed  Google Scholar 

  2. Nagata K, Yamazoe Y (2000) Pharmacogenetics of sulfotransferase. Annu Rev Pharmacol Toxicol 40:159–176. https://doi.org/10.1146/annurev.pharmtox.40.1.159

    Article  CAS  PubMed  Google Scholar 

  3. Lindsay J, Wang LL, Li Y, Zhou SF (2008) Structure, function and polymorphism of human cytosolic sulfotransferases. Curr Drug Metab 9:99–105. https://doi.org/10.2174/138920008783571819

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi S, Sakakibara Y, Mishiro E, Kouriki H, Nobe R, Kuroki K, Yasuda S, Liu MC, Suiko M (2009) Molecular cloning expression and characterization of a novel mouse SULT6 cytosolic sulfotransferase. J Biochem 146:399–405. https://doi.org/10.1093/jb/mvp087

    Article  CAS  PubMed  Google Scholar 

  5. Song WC (2001) Biochemistry and reproductive endocrinology of estrogen sulfotransferase. Ann N Y Acad Sci 948:43–50. https://doi.org/10.1111/j.1749-6632.2001.tb03985.x

    Article  CAS  PubMed  Google Scholar 

  6. Miki Y, Nakata T, Suzuki T, Darnel AD, Moriya T, Kaneko C, Hidaka K, Shiotsu Y, Kusaka H, Sasano H (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 87:5760–5768. https://doi.org/10.1210/jc.2002-020670

    Article  CAS  PubMed  Google Scholar 

  7. Alnouti Y, Klaassen CD (2006) Tissue distribution and ontogeny of sulfotransferase enzymes in mice. Toxicol Sci 93:242–255. https://doi.org/10.1093/toxsci/kfl050

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H, Varmalova O, Vargas FM, Falany CN, Leyh TS (1998) Surfuryl transfer: the catalytic mechanism of human estrogen sulfotransferase. J Biol Chem 273:10888–10892. https://doi.org/10.1074/jbc.273.18.10888

    Article  CAS  PubMed  Google Scholar 

  9. Petrotchenko EV, Pederson LC, Borchers CH, Tomer KB, Negishi M (2001) The dimerization of motif of cytosolic sulfotransferases. FEBS Lett 490:39–43. https://doi.org/10.1016/s0014-5793(01)02129-9

    Article  CAS  PubMed  Google Scholar 

  10. Caplan BA, Schwartz CJ (1973) Increased endothelial cell turnover in areas of in vivo Evans blue uptake in the pig aorta. Atherosclerosis 17:401–417. https://doi.org/10.1016/0021-9150(73)90031-2

    Article  CAS  PubMed  Google Scholar 

  11. Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J (1977) Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130:17–27. https://doi.org/10.1016/s0021-9150(96)06037-6

    Article  Google Scholar 

  12. Sternberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol: modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320:915–924. https://doi.org/10.1056/NEJM198904063201407

    Article  Google Scholar 

  13. Rosenfeld ME (1991) Oxidized LDL affects multiple atherogenic cellular responses. Circulation 83:2137–2140. https://doi.org/10.1161/01.cir.83.6.2137

    Article  CAS  PubMed  Google Scholar 

  14. Witztum JL (1993) Role of oxidized low-density lipoprotein in atherogenesis. Br Heart J 69:12–18. https://doi.org/10.1136/hrt.69.1_suppl.s12

    Article  Google Scholar 

  15. Cazzolato G, Avogaro P, Bittolo-Bon G (1991) Characterization of a more electronegatively charged LDL subfraction by ion exchange HPLC. Free Radic Biol Med 11:247–253. https://doi.org/10.1016/0891-5849(91)90120-r

    Article  CAS  PubMed  Google Scholar 

  16. Hodis HN, Kramsch DM, Avogaro P, Bittolo-Bon G, Cazzolato G, Hwang J, Peterson H, Sevanian A (1994) Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J Lipid Res 35:669–677

    Article  CAS  Google Scholar 

  17. Itabe H, Mori M, Fujimoto Y, Higashi Y, Takano T (2003) Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem 134:459–465. https://doi.org/10.1093/jb/mvg164

    Article  CAS  PubMed  Google Scholar 

  18. Markakis KP, Koropouli MK, Grammenou-Savvoglou S, van Winden EC, Dimitriou AA, Demopoulos CA, Tselepis AD, Kotsifaki EE (2010) Implication of lipoprotein associated phospholipase A2 activity in oxLDL uptake by macrophages. J Lipid Res 51:2191–2201. https://doi.org/10.1194/jlr.M003558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Aikawa M, Sugiyama S, Hill C, Voglic S, Rabkin E, Fukumoto Y, Schoen F, Witztum J, Libby P (2002) Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation 160:1390–1396. https://doi.org/10.1161/01.cir.0000028465.52694.9b

    Article  Google Scholar 

  20. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654. https://doi.org/10.1161/01.atv.0000033829.14012.18

    Article  CAS  PubMed  Google Scholar 

  21. Sigala F, Kotsinas A, Savari P, Filis K, Markantonis S, Iliodromitis EK, Gorgoulis VG, Andreadou I (2010) Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J Vasc Surg 52:704–713. https://doi.org/10.1016/j.jvs.2010.03.047

    Article  PubMed  Google Scholar 

  22. Di Pietro N, Formoso G, Pandolfi A (2016) Physiology and pathophysiology of oxLDL uptake by vascular wall cells in atherosclerosis. Vascul Pharmacol 84:1–7. https://doi.org/10.1016/j.vph.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  23. Nofer JR (2012) Estrogens and atherosclerosis: insights from animal models and cell systems. J Mol Endocrinol 48:R13-29. https://doi.org/10.1530/JME-11-0145

    Article  CAS  PubMed  Google Scholar 

  24. Yokota K, Shimada H, Kamaguchi A, Sakaguchi O (1977) Studies on the toxin of Aspergillus fumigatus VII. Purification and some properties of hemolytic toxin (Asp-hemolysin) from culture filtrates and mycelia. Microbiol Immunol 21:11–22. https://doi.org/10.1111/j.1348-0421.1977.tb02803.x

    Article  CAS  PubMed  Google Scholar 

  25. Ebina K, Sakagami H, Yokota K, Kondo H (1994) Cloning and nucleotide sequence of cDNA encoding Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1219:148–150. https://doi.org/10.1016/0167-4781(94)90258-5

    Article  CAS  PubMed  Google Scholar 

  26. Kudo Y, Fukuchi Y, Kumagai T, Ebina K, Yokota K (2001) Oxidized low-density lipoprotein-binding specificity of Asp-hemolysin from Aspergillus fumigatus. Biochim Biophys Acta 1568:183–188. https://doi.org/10.1016/s0304-4165(01)00217-3

    Article  CAS  PubMed  Google Scholar 

  27. Kudo Y, Ootani T, Kumagai T, Fukuchi Y, Ebina K, Yokota K (2002) A novel oxidized low-density lipoprotein-binding protein, Asp-hemolysin, recognizes lysophosphatidylcholine. Biol Pharm Bull 25:787–790. https://doi.org/10.1248/bpb.25.787

    Article  CAS  PubMed  Google Scholar 

  28. Kumagai T, Tsutsumi H, Ogawa N, Naito S, Ebina K, Yokota K, Nagata K (2006) Oxidized low-density lipoprotein-binding specificity of the Asp-hemolysin-related synthetic peptides from Aspergillus fumigatus. Biol Pharm Bull 29:2181–2186. https://doi.org/10.1248/bpb.29.2181

    Article  CAS  PubMed  Google Scholar 

  29. Fukuchi Y, Kudo Y, Kumagai T, Ebina K, Yokota K (1998) Oxidized low density lipoprotein inhibits the hemolytic activity of Asp-hemolysin from Aspergillus fumigatus. FEMS Microbiol Lett 167:275–280. https://doi.org/10.1111/j.1574-6968.1998.tb13239.x

    Article  CAS  PubMed  Google Scholar 

  30. Tokumura A, Sumida T, Toujima M, Kogure K, Fukuzawa K (2000) Platelet-activating factor (PAF)-like oxidized phospholipids: relevance to atherosclerosis. BioFactors 13:29–33. https://doi.org/10.1002/biof.5520130106

    Article  CAS  PubMed  Google Scholar 

  31. Sato A, Yamazaki M, Watanabe H, Sakurai E, Ebina K (2020) Human estrogen sulfotransferase and its related fluorescently labeled decapeptides specifically interact with oxidized low-density lipoprotein. J Pept Sci, in press. https://doi.org/10.1002/psc.3274

    Article  Google Scholar 

  32. Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34:1345–1353. https://doi.org/10.1172/JCI103182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sato A, Yamanaka H, Oe K, Yamazaki Y, Ebina K (2014) Novel fluorescently labeled peptide compounds for detection of oxidized low-density lipoprotein at high specificity. Chem Biol Drug Des 84:443–449. https://doi.org/10.1111/cbdd.12333

    Article  CAS  PubMed  Google Scholar 

  34. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  36. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  37. Ma B, Shou M, Schrag ML (2003) Solvent effect on cDNA-expressed human sulfotransferase (SULT) activities in vitro. Drug Metab Dispos 31:1300–1305. https://doi.org/10.1006/10.1124/dmd.31.11.1300

    Article  CAS  PubMed  Google Scholar 

  38. Reinen J, Vriese E, Glatt H, Vermeulen NP (2006) Development and validation of a fluorescence HPLC-based screening assay for inhibition of human estrogen sulfotransferase 1E1. Anal Biochem 357:85–92. https://doi.org/10.1016/j.ab.2006.07.015

    Article  CAS  PubMed  Google Scholar 

  39. Thumser AE, Voysey JE, Wilton DC (1994) The binding of lysophospholipids to rat liverfatty acid-binding protein and albumin. Biochem J 301:801–806. https://doi.org/10.1042/bj3010801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sato A, Kumagai T, Aoki J, Ebina K (2012) Synthetic biotinylated peptide compounds derived from Asp-hemolysin: novel potent inhibitors of platelet-activating factor. Eur J Pharmacol 685:205–212. https://doi.org/10.1016/j.ejphar.2012.04.025

    Article  CAS  PubMed  Google Scholar 

  41. Hayase N, Satomi M, Hara A, Awaya T, Shimizu K, Matsubara K (2003) Protective effects of quinaprilat and trandolaprilat, active metabolites of quinapril and trandolapril, on hemolysis induced by lysophosphatidylcholine in human erythrocytes. Biol Pharm Bull 26:712–716. https://doi.org/10.1248/bpb.26.712

    Article  CAS  PubMed  Google Scholar 

  42. Itabe H (1998) Oxidized phospholipids as a new landmark in atherosclerosis. Prog Lipid Res 37:181–207. https://doi.org/10.1016/s0163-7827(98)00009-5

    Article  CAS  PubMed  Google Scholar 

  43. Jougasaki M, Kugiyama K, Saito Y, Nakao K, Imura H, Yasue H (1992) Suppression of endothelin-1 secretion by lysophosphatidylcholine in oxidized low-density lipoprotein in cultured vascular endothelial cells. Circ Res 71:614–619. https://doi.org/10.1161/01.res.71.3.614

    Article  CAS  PubMed  Google Scholar 

  44. Sugiyama S, Kugiyama K, Ohgushi M, Fujimoto K, Yasue H (1994) Lysophpsphatidylcholine in oxidized low-density lipoprotein increases endothelial susceptibility to polymorphonuclear leukocyte-induced endothelial dysfunction in porcine coronary arteries. Role of protein kinase C. Circ Res 74:565–575. https://doi.org/10.1161/01.res.74.4.565

    Article  CAS  PubMed  Google Scholar 

  45. Kumagai T, Ogawa N, Tsutsumi H, Ebina K, Yokota K (2005) A synthetic peptide (P-21) derived from Asp-hemolysin inhibits the induction of pacrophage proliferation by oxidized low-density lipoprotein. Biol Pharm Bull 28:1381–1384. https://doi.org/10.1248/bpb.29.2181

    Article  CAS  PubMed  Google Scholar 

  46. Pederson L, Petrotchenko E, Shevtsov S, Negishi M (2002) Crystal structure of the human estrogen sulfotransferase-PAPS complex. J Biol Chem 277:17928–17932. https://doi.org/10.1074/jbc.M111651200

    Article  CAS  Google Scholar 

  47. Kakuta Y, Petrotchenko EV, Pederson LC, Negishi M (1998) The sulfuryl transfer mechanism. Crystal structure of a vanadate complex of estrogen sulfotransferase and mutational analysis. J Biol Chem 273:27325–27330. https://doi.org/10.1074/jbc.273.42.27325

    Article  CAS  PubMed  Google Scholar 

  48. Tibbs ZE, Falany CN (2016) An engineered feterodimeric model to investigate SULT1B1 dependence on intersubunit communication. Biochem Pharmacol 115:123–133. https://doi.org/10.1016/j.bcp.2016.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pasqualini JR (2009) Estrogen sulfotransferases in breast and endometrial cancers. Ann N Y Acad Sci 1155:88–98. https://doi.org/10.1111/j.1749-6632.2009.04113.x

    Article  CAS  PubMed  Google Scholar 

  50. Mercer KE, Apostolov EO, Gamboa DCG, Yu X, Lang P, Roberts DW, Davis W, Basnakian AG, Kadlubar FF, Kadlubar SA (2010) Expression of sulfotransferase isoform 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis. Int J Mol Epidemiol Genet 1:92–103

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ku Y, Lin X, Xu J, Jing H, Qin Y, Li Y (2018) SULT1E1 inhibits cell proliferation and invasion by activating PPARγ in breast cancer. J Cancer 9:1078–1087. https://doi.org/10.7150/jca.23596

    Article  CAS  Google Scholar 

  52. Khor VK, Dhir R, Yin X, Ahima RS, Song WC (2010) Estrogen sulfotransferase regulates body fat and glucose homeostasis. Am J Physiol Endocrinol Metab 299:E657-664. https://doi.org/10.1152/ajpendo.00707.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wada T, Ihunnah CA, Gao J, Chai X, Zeng S, Philips BJ, Rubin JP, Marra KG, Xie W (2011) Estrogen sulfotransferase inhibits adipocyte differentiation. Mol Endocrinol 25:1612–1623. https://doi.org/10.1210/me.2011-1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chai X, Guo Y, Jiang M, Hu B, Li Z, Fan J, Deng M, Billiar TR, Kucera H, Gaikwad NW, Xu M, Lu P, Yan J, Fu H, Liu Y, Yu L, Huang M, Zeng S, Xie W (2015) Estrogen sulfotransferase ablation sensitizes mice to sepsis. Nat Commun 6:7979. https://doi.org/10.1038/ncomms8979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakamura Y, Miki Y, Suzuki T, Nakata T, Darnel D, Moriya T, Tazawa C, Saito H, Ishibashi T, Takahashi S, Yamada S, Sasano H (2003) Steroid sulfatase and estrogen sulfotransferase in the atherosclerotic human aorta. Am J Pathol 163:1329–1339. https://doi.org/10.1016/S0002-9440(10)63492-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shchelkunova TA, Morozov IA, Rubtsov PM, Samokhodskaya LM, Andrianova IV, Sobenin IA, Orekhov AN, Smirnov AN (2013) Changes in levels of gene expression in human aorta intima during atherogenesis. Biochemistry (Mosc) 78:463–470. https://doi.org/10.1134/S0006297913050040

    Article  CAS  Google Scholar 

  57. Prescott SM, Zimmerman GA, McIntyre TM (1990) Platelet-activating factor. J Biol Chem 265:17381–17384

    Article  CAS  Google Scholar 

  58. Kihara Y, Yanagida K, Masago K, Kita Y, Hishikawa D, Shindou H, Ishii S, Shimizu T (2008) Platelet-activating factor production in the spinal cord of experimental allergic encephalomyelitis mice via the group IV A cytosolic phospholipase A2-Lyso-PAFAT axis. J Immunol 181:5008–5014. https://doi.org/10.4049/jimmunol.181.7.5008

    Article  CAS  PubMed  Google Scholar 

  59. Shindou H, Shimizu T (2009) Acyl-CoA: lysophospholipid acyltransferases. J Biol Chem 284:1–5. https://doi.org/10.1074/jbc.R800046200

    Article  CAS  PubMed  Google Scholar 

  60. Prescott SM, Zimmerman GA, Stafforini DM, McIntyre TM (2000) Platelet-activating factor and related lipid mediators. Annu Rev Biochem 69:419–445. https://doi.org/10.1146/annurev.biochem.69.1.419

    Article  CAS  PubMed  Google Scholar 

  61. Ayala A, Chaudry IH (1996) Platelet activating factor and its role in trauma, shock, and sepsis. New Horiz 4:265–275

    CAS  PubMed  Google Scholar 

  62. Fang X, Gaudette D, Furui T, Mao M, Estrella V, Eder A, Pustilnik T, Sasagawa T, Lapushin R, Yu S, Jaffe RB, Wiener JR, Erickson JR, Mills GB (2000) Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci 905:188–208. https://doi.org/10.1111/j.1749-6632.2000.tb06550.x

    Article  CAS  PubMed  Google Scholar 

  63. Shimada M, Kamiyama Y, Sato A, Honma W, Nagata K, Yamazoe Y (2002) A hydroxysteroid sulfotransferase, St2b2, is a skin cholesterol sulfotransferase in mice. J Biochem 131:167–169. https://doi.org/10.1093/oxfordjournals.jbchem.a003083

    Article  CAS  PubMed  Google Scholar 

  64. Shimada M, Matsuda T, Sato A, Akase T, Matsubara T, Nagata K, Yamazoe Y (2008) Expression of a skin cholesterol sulfotransferase, St2b2, is a trigger of epidermal cell differentiation. Xenobiotica 38:1487–1499. https://doi.org/10.1080/00498250802488593

    Article  CAS  PubMed  Google Scholar 

  65. Runge-Morris M, Kocarek TA, Falany CN (2013) Regulation of the cytosolic sulfotransferases by nuclear receptors. Drug Metab Rev 45:15–33. https://doi.org/10.3109/03602532.2012.748794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. All authors would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, A., Watanabe, H., Yamazaki, M. et al. Interaction of Native- and Oxidized-Low-Density Lipoprotein with Human Estrogen Sulfotransferase. Protein J 40, 192–204 (2021). https://doi.org/10.1007/s10930-021-09971-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-021-09971-y

Keywords

Navigation