Skip to main content

Structure of Yak Lactoperoxidase at 1.55 Å Resolution

Abstract

Lactoperoxidase (LPO) is a heme containing oxido-reductase enzyme. It is secreted from mammary, salivary, lachrymal and mucosal glands. It catalyses the conversion of thiocyanate into hypothiocyanate and halides into hypohalides. LPO belongs to the superfamily of mammalian heme peroxidases which also includes myeloperoxidase (MPO), eosinophil peroxidase (EPO) and thyroid peroxidase (TPO). The heme prosthetic group is covalently linked in LPO through two ester bonds involving conserved residues Glu258 and Asp108. It was isolated from colostrum of yak (Bos grunniens), purified to homogeneity and crystallized using ammonium iodide as a precipitating agent. The crystals belonged to monoclinic space group P21 with cell dimensions of a = 53.91 Å, b = 78.98 Å, c = 67.82 Å and β = 92.96°. The structure was determined at 1.55 Å resolution. This is the first structure of LPO from yak. Also, this is the highest resolution structure of LPO determined so far from any source. The structure determination revealed that three segments (Ser1–Cys15), (Thr117–Asn138) and (Cys167–Leu175) were disordered and formed one surface of LPO structure. In the substrate binding site, the iodide ions were observed in three subsites which are formed by (1) heme moiety and residues, Gln105, Asp108, His109, Phe113, Arg255, Glu258, Phe380 and Phe381, (2) residues, Asn230, Lys232, Pro236, Cys248, Phe254, Phe381 and Pro424 and (3) residues, Ser198, Leu199 and Arg202. The structure determination also revealed that the side chain of Phe254 was disordered. It was observed to adopt two conformations in the structures of LPO.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Thomas EL, Milligan TW, Joyner RE, Jefferson MM (1994) Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral streptococci. Infect Immun 62:529–535

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Huwiler M, Kohler H (1984) Pseudo-catalytic degradation of hydrogen peroxide in the lactoperoxidase/H2O2/iodide system. Eur J Biochem 141:69–74

    CAS  PubMed  Google Scholar 

  3. Doerge DR, Decker CJ (1994) Inhibition of peroxidase-catalyzed reactions by arylamines: mechanism for the anti-thyroid action of sulfamethazine. Chem Res Toxicol 7:164–169

    CAS  PubMed  Google Scholar 

  4. Oakley GG, Devanaboyina U, Robertson LW, Gupta RC (1996) Oxidative DNA damage induced by activation of polychlorinated biphenyls (PCBs): implications for PCB-induced oxidative stress in breast cancer. Chem Res Toxicol 9:1285–1292

    CAS  PubMed  Google Scholar 

  5. Metodiewa D, Reszka K, Dunford HB (1989) Oxidation of the substituted catechols dihydroxyphenylalanine methyl ester and trihydroxyphenylalanine by lactoperoxidase and its compounds. Arch Biochem Biophys 274:601–608

    CAS  PubMed  Google Scholar 

  6. Metodiewa D, Reszka K, Dunford HB (1989) Evidence for a peroxidatic oxidation of norepinephrine, a catecholamine, by lactoperoxidase. Biochem Biophys Res Commun 160:1183–1188

    CAS  PubMed  Google Scholar 

  7. Ferrari RP, Laurenti E, Casella L, Poli S (1993) Oxidation of catechols and catecholamines by horseradish-peroxidase and lactoperoxidase-ESR spin stabilization approach combined with optical methods. Spectrochim Acta A Mol Biomol Spectrosc 49:1261–1267

    Google Scholar 

  8. Sipe Jr HJ, Jordan SJ, Hanna PM, Mason RP (1994) The metabolism of 17 beta-estradiol by lactoperoxidase: a possible source of oxidative stress in breast cancer. Carcinogenesis 15:2637–2643

    CAS  PubMed  Google Scholar 

  9. Cavalieri J, Kinder JE, Death G, Fitzpatrick LA (1997) Effect of 48 h treatment with 17 beta-oestradiol or progesterone on follicular wave emergence and synchrony of ovulation in Bos indicus cows when administered at the end of a period of progesterone treatment. Anim Reprod Sci 46:187–201

    CAS  PubMed  Google Scholar 

  10. Ghibaudi EM, Laurenti E, Beltramo P, Ferrari RP (2000) Can estrogenic radicals, generated by lactoperoxidase, be involved in the molecular mechanism of breast carcinogenesis? Redox Rep 5:229–235

    CAS  PubMed  Google Scholar 

  11. Zeng J, Fenna RE (1992) X-ray crystal structure of canine myeloperoxidase at 3 Å resolution. J Mol Biol 226:185–207

    CAS  PubMed  Google Scholar 

  12. Fiedler TJ, Davey CA, Fenna RE (2000) X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 Å resolution. J Biol Chem 275:11964–11971

    CAS  PubMed  Google Scholar 

  13. Fenna R, Zeng J, Davey C (1995) Structure of the green heme in myeloperoxidase. Arch Biochem Biophys 316:653–656

    CAS  PubMed  Google Scholar 

  14. Wang J, Slungaard A (2006) Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys 445:256–260

    CAS  PubMed  Google Scholar 

  15. Ruf J, Carayon P (2006) Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 445:269–277

    CAS  PubMed  Google Scholar 

  16. Zederbauer M, Furtmüller PG, Brogioni S, Jakopitsch C, Smulevich G, Obinger C (2007) Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties. Nat Prod Rep 24:571–584

    CAS  PubMed  Google Scholar 

  17. Suriano G, Watanabe S, Ghibaudi EM, Bollen A, Ferrari RP, Moguilevsky N (2001) Glu375Gln and Asp225Val mutants: about the nature of the covalent linkages between heme group and apo-Protein in bovine lactoperoxidase. Bioorg Med Chem Lett 11:2827–2831

    CAS  PubMed  Google Scholar 

  18. Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36

    CAS  PubMed  Google Scholar 

  19. Colas C, Kuo JM, de Montellano PR (2002) Asp-225 and Glu-375 in autocatalytic attachment of the prosthetic heme group of lactoperoxidase. J Biol Chem 277:7191–7200

    CAS  PubMed  Google Scholar 

  20. Oxvig C, Thomsen AR, Overgaard MT, Sørensen ES, Højrup P, Bjerrum MJ, Gleich GJ, Sottrup-Jensen L (1999) Biochemical evidence for heme linkage through esters with Asp-93 and Glu-241 in human eosinophil peroxidase the ester with Asp-93 is only partially formed in vivo. J Biol Chem 274:16953–16958

    CAS  PubMed  Google Scholar 

  21. Singh PK, Sirohi HV, Iqbal N, Tiwari P, Kaur P, Sharma S, Singh TP (2017) Structure of bovine lactoperoxidase with a partially linked heme moiety at 1.98 Å resolution. BBA Prot Proteom 1865:329–335

    CAS  Google Scholar 

  22. Singh PK, Iqbal N, Sirohi HV, Bairagya HR, Kaur P, Shrama S, Singh TP (2018) Structural basis of activation of mammalian heme peroxidases. Prog Biophys Mol Biol 133:49–55

    CAS  PubMed  Google Scholar 

  23. Singh AK, Singh N, Sharma S, Singh SB, Kaur P, Bhushan A, Srinivasan A, Singh TP (2008) Crystal structure of lactoperoxidase at 2.4 Å resolution. J Mol Biol 376:1060–1075

    CAS  PubMed  Google Scholar 

  24. Sheikh IA, Singh AK, Singh N, Sinha M, Singh SB, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP (2009) Structural evidence of substrate specificity in mammalian peroxidases structure of the thiocyanate complex with lactoperoxidase and its interactions at 2.4 Å resolution. J Biol Chem 284:14849–14856

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh AK, Singh N, Sinha M, Bhushan A, Kaur P, Srinivasan A, Sharma S, Singh TP (2009) Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. J Biol Chem 284:20311–20318

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh AK, Kumar RP, Pandey N, Singh N, Sinha M, Bhushan A, Kaur P, Sharma S, Singh TP (2010) Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 Å resolution. J Biol Chem 285:1569–1576

    CAS  PubMed  Google Scholar 

  27. Singh AK, Pandey N, Sinha M, Kaur P, Sharma S, Singh TP (2011) Structural evidence for the order of preference of inorganic substrates in mammalian heme peroxidases: crystal structure of the complex of lactoperoxidase with four inorganic substrates, SCN-, I-, Br–and Cl. Int J Biochem Mol Biol 2:328–339

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh AK, Singh N, Sharma S, Shin K, Takase M, Kaur P, Srinivasan A, Singh TP (2009) Inhibition of lactoperoxidase by its own catalytic product: crystal structure of the hypothiocyanate-inhibited bovine lactoperoxidase at 2.3 Å resolution. Biophys J 96:646–654

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Singh AK, Singh N, Tiwari A, Sinha M, Kushwaha GS, Kaur P, Srinivasan A, Sharma S, Singh TP (2010) First structural evidence for the mode of diffusion of aromatic ligands and ligand-induced closure of the hydrophobic channel in heme peroxidases. J Biol Inorg Chem 15:1099–1107

    CAS  PubMed  Google Scholar 

  30. Singh AK, Smith ML, Yamini S, Ohlsson PI, Sinha M, Kaur P, Sharma S, Paul JA, Singh TP, Paul KG (2012) Bovine carbonyl lactoperoxidase structure at 2.0 Å resolution and infrared spectra as a function of pH. Protein J 31:598–608

    CAS  PubMed  Google Scholar 

  31. Sharma S, Singh AK, Kaushik S, Sinha M, Singh RP, Sharma P, Sirohi H, Kaur P, Singh TP (2013) Lactoperoxidase: structural insights into the function, ligand binding and inhibition. Int J Biochem Mol Biol 4:108–128

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kumar A, Ghosh B, Poswal HK, Pandey KK, Hosur MV, Dwivedi A, Makde RD, Sharma SM (2016) Protein crystallography beamline (PX-BL21) at Indus-2 synchrotron. J Synchrotron Radiat 23:629–634

    CAS  PubMed  Google Scholar 

  33. Kabsch W (2010) XDS. Acta Crystallogr D Biol Crystallogr 66:125–132

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vagin A, Teplyakov A (2000) An approach to multi-copy search in molecular replacement. Acta Crystallogr D Biol Crystallogr 56:1622–1624

    CAS  PubMed  Google Scholar 

  35. Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    CAS  PubMed  PubMed Central  Google Scholar 

  37. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallogr 40:82–92

    Google Scholar 

  38. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK—a program to check the stereochemical quality of protein structures. J App Crystallogr D Biol 26:283–291

    CAS  Google Scholar 

  39. Ramachandran GN, Sasisekaran V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–438

    CAS  PubMed  Google Scholar 

  40. Taurog A (1999) Molecular evolution of thyroid peroxidase. Biochimie 81:557–562

    CAS  PubMed  Google Scholar 

  41. Forbes LV, Sjogren T, Auchere F, Jenkins DW, Thong B, Laughton D, Hemsley P, Pairaudeau G, Turner R, Eriksson H, Unitt JF, Kettle AJ (2013) Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. J Biol Chem 288:36636–36647

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Carpena X, Loprasert S, Mongkolsuk S, Switala J, Loewen PC, Fita I (2003) Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7A resolution. J Mol Biol 327:475–489

    CAS  PubMed  Google Scholar 

  43. Li H, Poulos TL (1997) The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4:140–146

    CAS  PubMed  Google Scholar 

  44. Sevrioukova IF, Poulos TL (2015) Anion-dependent stimulation of CYP3A4 monooxygenase. Biochemistry 54:4083–4096

    CAS  PubMed  Google Scholar 

  45. Li L, Chang Z, Pan Z, Fu ZQ, Wang X (2008) Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc Natl Acad Sci U S A 105:13883–13888

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    CAS  PubMed  Google Scholar 

  47. Poulos TL, Freer ST, Alden RA, Edwards SL, Skogland U, Takio K, Eriksson B, Xuong N, Yonetani T, Kraut J (1980) The crystal structure of cytochrome c peroxidase. J Biol Chem 255:575–580

    CAS  PubMed  Google Scholar 

  48. Berglund GI, Carlsson GH, Smith AT, Szöke H, Henriksen A, Hajdu J (2002) The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463–468

    CAS  PubMed  Google Scholar 

  49. Patterson WR, Poulos TL (1995) Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry 34:4331–4341

    CAS  PubMed  Google Scholar 

  50. Henriksen A, Mirza O, Indiani C, Teilum K, Smulevich G, Welinder KG, Gajhede M (2001) Structure of soybean seed coat peroxidase: a plant peroxidase with unusual stability and haem-apoprotein interactions. Protein Sci 10:108–115

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schuller DJ, Ban N, Huystee RB, McPherson A, Poulos TL (1996) The crystal structure of peanut peroxidase. Structure 4:311–321

    CAS  PubMed  Google Scholar 

  52. Kunishima N, Fukuyama K, Matsubara H, Hatanaka H, Shibano Y, Amachi T (1994) Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9 Å resolution: structural comparisons with the lignin and cytochrome c peroxidases. J Mol Biol 235:331–344

    CAS  PubMed  Google Scholar 

  53. Jiménez VS, Fernández-Fueyo E, Medrano FJ, Romero A, Martínez AT, Ruiz-Dueñas FJ (2015) Improving the pH-stability of versatile peroxidase by comparative structural analysis with a naturally-stable manganese peroxidase. PLoS One 10:e0140984

    Google Scholar 

  54. Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem 268:4429–4440

    CAS  PubMed  Google Scholar 

  55. Blodig W, Smith AT, Doyle WA, Piontek K (2001) Crystal structures of pristine and oxidatively processed lignin peroxidase expressed in Escherichia coli and of the W171F variant that eliminates the redox active tryptophan 171. Implications for the reaction mechanism. J Mol Biol 305:851–861

    CAS  PubMed  Google Scholar 

  56. Sundaramoorthy M, Gold MH, Poulos TL (2010) Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J Inorg Biochem 104:683–690

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Aranda R, Cai H, Worley CE, Levin EJ, Li R, Olson JS, Phillips GN, Richards MP (2009) Structural analysis of fish versus mammalian hemoglobins: effect of the heme pocket environment on autooxidation and hemin loss. Proteins 75:217–230

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Smerdon SJ, Dodson GG, Wilkinson AJ, Gibson QH, Blackmore RS (1991) Distal pocket polarity in ligand binding to myoglobin: structural and functional characterization of a threonine68(E11) mutant. Biochemistry 30:6252–6260

    CAS  PubMed  Google Scholar 

  59. Pesce A, Dewilde S, Nardini M, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2003) Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11:1087–1095

    CAS  PubMed  Google Scholar 

  60. Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M (2004) Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. J Mol Biol 336:917–927

    PubMed  Google Scholar 

  61. Harutyunyan EH, Safonova TN, Kuranova IP, Popov AN, Teplyakov AV, Obmolova GV, Rusakov AA, Vainshtein BK, Dodson GG, Wilson JC (1995) The structure of deoxy- and oxy-leghaemoglobin from lupin. J Mol Biol 251:104–115

    CAS  PubMed  Google Scholar 

  62. Poulos TL, Kraut J (1980) The stereochemistry of peroxidase catalysis. J Biol Chem 255:8199–8205

    CAS  PubMed  Google Scholar 

  63. Rodríguez-López JN, Lowe DJ, Hernández-Ruiz J, Hiner AN, García-Cánovas F, Thorneley RN (2001) Mechanism of reaction of hydrogen peroxide with horseradish peroxidase: identification of intermediates in the catalytic cycle. J Am Chem Soc 123:11838–11847

    PubMed  Google Scholar 

  64. Furtmueller PG, Zederbaur M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C (2006) Active site structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445:199–213

    CAS  Google Scholar 

  65. Hamilton G (1974) Hayashi O (ed) Chemical methods and mechanism for oxygenases. Academic Press, New York, pp 405–451

    Google Scholar 

  66. Carpena X, Vidossich P, Schroettner K, Calisto BM, Banerjee S, Stampler J, Soudi M, Furtmüller PG, Rovira C, Fita I, Obinger C (2009) Essential role of proximal histidine-asparagine interaction in mammalian peroxidases. J Biol Chem 284:25929–25937

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank Science and Engineering Research Board (SERB), New Delhi for the grants under SERB-Distinguished Fellowship and National Post-Doctoral Fellowship to TPS and VV respectively. They also thank Indian Council of Medical Research for grant. CR thanks Theragen Biologics Pvt. Ltd., Chennai and NA thanks the Department of Health Research of the Ministry of Health and Family Welfare, New Delhi and PKS thanks AIIMS for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tej P. Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, V., Rani, C., Ahmad, N. et al. Structure of Yak Lactoperoxidase at 1.55 Å Resolution. Protein J 40, 8–18 (2021). https://doi.org/10.1007/s10930-020-09957-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09957-2

Keywords

  • Lactoperoxidase
  • Crystal structure
  • Iodide ion
  • Substrate binding channel
  • Conformation