Skip to main content

Advertisement

Log in

Influenza Hemagglutinin Head Domain Mimicry by Rational Design

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Despite diligent vaccination efforts, influenza virus infection remains a major cause for respiratory-related illness across the globe. The less-than-optimal immunity conferred by the currently prescribed seasonal vaccines and protracted production times warrant the development of novel vaccines. Induction of an epitope-focused antibody response targeting known neutralization epitopes is a viable strategy to enhance the breadth of protection against rapidly evolving infectious viruses. We report the development of a design framework to mimic the hemagglutinin (HA) head fragment of H1-subtype viruses by delineating the interaction network of invariant residues lining the receptor binding site (RBS); a site targeted by cross-reactive neutralizing antibodies. The incorporation of multiple sequence alignment information in our algorithm to fix the construct termini and engineer rational mutations facilitates the facile extension of the design to heterologous (subtype-specific) influenza strains. We evaluated our design protocol by generating head fragments from divergent influenza A H1N1 A/Puerto Rico/8/34 and pH1N1 A/California/07/2009 strains that share a sequence identity of only 74.4% within the HA1 subunit. The designed immunogens exhibited characteristics of a well-ordered protein, and bound conformation-specific RBS targeting antibodies with high affinity, a desirable feature for putative vaccine candidates. Additionally, the bacterial expression of these immunogens provides a low-cost, rapidly scalable alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. Krammer F, Palese P (2015) Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14(3):167–182

    CAS  PubMed  Google Scholar 

  2. Kumar A, Singh S (2015) Editorial: influenza virus vaccines and immunotherapies. Front Immunol 6:599

    PubMed  PubMed Central  Google Scholar 

  3. Schultz-Cherry S, Jones JC (2010) Influenza vaccines: the good, the bad, and the eggs. Adv Virus Res 77:63–84

    CAS  PubMed  Google Scholar 

  4. Carrat F, Flahault A (2007) Influenza vaccine: the challenge of antigenic drift. Vaccine 25(39–40):6852–6862

    CAS  PubMed  Google Scholar 

  5. Flannery B et al (2015) Early estimates of seasonal influenza vaccine effectiveness–United States, January 2015. MMWR Morb Mortal Wkly Rep 64(1):10–15

    PubMed  PubMed Central  Google Scholar 

  6. Gerhard W (2001) The role of the antibody response in influenza virus infection. Curr Top Microbiol Immunol 260:171–190

    CAS  PubMed  Google Scholar 

  7. Shi Y et al (2014) Enabling the “host jump”: structural determinants of receptor-binding specificity in influenza A viruses. Nat Rev Microbiol 12(12):822–831

    CAS  PubMed  Google Scholar 

  8. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569

    CAS  PubMed  Google Scholar 

  9. Xiong X, McCauley JW, Steinhauer DA (2014) Receptor binding properties of the influenza virus hemagglutinin as a determinant of host range. Curr Top Microbiol Immunol 385:63–91

    PubMed  Google Scholar 

  10. Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73(4):823–832

    CAS  PubMed  Google Scholar 

  11. Braakman I et al (1991) Folding of influenza hemagglutinin in the endoplasmic reticulum. J Cell Biol 114(3):401–411

    CAS  PubMed  Google Scholar 

  12. Caton AJ et al (1982) The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31(2 Pt 1):417–427

    CAS  PubMed  Google Scholar 

  13. Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289(5796):373–378

    CAS  PubMed  Google Scholar 

  14. Neumann G, Kawaoka Y (2015) Transmission of influenza A viruses. Virology 479–480:234–246

    PubMed  Google Scholar 

  15. Laursen NS, Wilson IA (2013) Broadly neutralizing antibodies against influenza viruses. Antiviral Res 98(3):476–483

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rathore U et al (2014) Immunogen design for HIV-1 and influenza. Biochim Biophys Acta 1844(11):1891–1906

    CAS  PubMed  Google Scholar 

  17. Dreyfus C et al (2012) Highly conserved protective epitopes on influenza B viruses. Science 337(6100):1343–1348

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ekiert DC et al (2012) Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489(7417):526–532

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wine Y et al (2015) Serology in the 21st century: the molecular-level analysis of the serum antibody repertoire. Curr Opin Immunol 35:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Corti D, Lanzavecchia A (2013) Broadly neutralizing antiviral antibodies. Annu Rev Immunol 31:705–742

    CAS  PubMed  Google Scholar 

  21. Van, T.D., et al., A Perspective on Rational Designs of a Hemagglutinin Based Universal Influenza Vaccine. Curr Pharm Des, 2016.

  22. Ellebedy AH, Ahmed R (2012) Re-engaging cross-reactive memory B cells: the influenza puzzle. Front Immunol 3:53

    PubMed  PubMed Central  Google Scholar 

  23. Andreatta RH, Liem RK, Scheraga HA (1971) Mechanism of action of thrombin on fibrinogen. I. Synthesis of fibrinogen-like peptides, and their proteolysis by thrombin and trypsin. Proc Natl Acad Sci U S A 68(2):253–256

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Anfinsen CB, Scheraga HA (1975) Experimental and theoretical aspects of protein folding. Adv Protein Chem 29:205–300

    CAS  PubMed  Google Scholar 

  25. Dyson HJ, Wright PE, Scheraga HA (2006) The role of hydrophobic interactions in initiation and propagation of protein folding. Proc Natl Acad Sci U S A 103(35):13057–13061

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang Y et al (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5):680–682

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73(1):237–244

    CAS  PubMed  Google Scholar 

  28. Gamblin SJ et al (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303(5665):1838–1842

    CAS  PubMed  Google Scholar 

  29. Ganesh C et al (1997) Thermodynamic characterization of the reversible, two-state unfolding of maltose binding protein, a large two-domain protein. Biochemistry 36(16):5020–5028

    CAS  PubMed  Google Scholar 

  30. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    CAS  PubMed  Google Scholar 

  31. Riddles PW, Blakeley RL, Zerner B (1979) Ellman’s reagent: 5,5’-dithiobis(2-nitrobenzoic acid)–a reexamination. Anal Biochem 94(1):75–81

    CAS  PubMed  Google Scholar 

  32. Russell RJ et al (2006) Avian and human receptor binding by hemagglutinins of influenza A viruses. Glycoconj J 23(1–2):85–92

    CAS  PubMed  Google Scholar 

  33. Stencel-Baerenwald JE et al (2014) The sweet spot: defining virus-sialic acid interactions. Nat Rev Microbiol 12(11):739–749

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lutteke T, Frank M, von der Lieth CW (2005) Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Res 33:D242–D246

    PubMed  Google Scholar 

  35. Sabesan S, Bock K, Paulson JC (1991) Conformational analysis of sialyloligosaccharides. Carbohydr Res 218:27–54

    CAS  PubMed  Google Scholar 

  36. Hong M et al (2013) Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site. J Virol 87(22):12471–12480

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Whittle JR et al (2011) Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci U S A 108(34):14216–14221

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sharma D et al (2005) Protein minimization of the gp120 binding region of human CD4. Biochemistry 44(49):16192–16202

    CAS  PubMed  Google Scholar 

  39. Li LK, Riehm JP, Scheraga HA (1966) Structural studies of ribonuclease 23 Pairing of the tyrosyl and carboxyl groups. Biochemistry 5(6):2043–2048

    CAS  PubMed  Google Scholar 

  40. Kuhlman B et al (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368

    CAS  PubMed  Google Scholar 

  41. Mallajosyula VV et al (2014) Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci U S A 111(25):E2514–E2523

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mallajosyula VV et al (2015) Hemagglutinin Sequence Conservation Guided Stem Immunogen Design from Influenza A H3 Subtype. Front Immunol 6:329

    PubMed  PubMed Central  Google Scholar 

  43. Mallajosyula VV et al (2013) In vitro and in vivo characterization of designed immunogens derived from the CD-helix of the stem of influenza hemagglutinin. Proteins 81(10):1759–1775

    CAS  PubMed  Google Scholar 

  44. Valkenburg SA et al (2016) Stalking influenza by vaccination with pre-fusion headless HA mini-stem. Sci Rep 6:22666

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jia B, Jeon CO (2016) High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives. Open Biol 6(8):160196

    PubMed  PubMed Central  Google Scholar 

  46. Aguilar-Yanez JM et al (2010) An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS ONE 5(7):e11694

    PubMed  PubMed Central  Google Scholar 

  47. Song L et al (2008) Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs. PLoS ONE 3(5):e2257

    PubMed  PubMed Central  Google Scholar 

  48. Xu R et al (2012) Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic. J Virol 86(2):982–990

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hao MH, Scheraga HA (1998) Molecular mechanisms for cooperative folding of proteins. J Mol Biol 277(4):973–983

    CAS  PubMed  Google Scholar 

  50. Gahl RF, Scheraga HA (2009) Oxidative folding pathway of onconase, a ribonuclease homologue: insight into oxidative folding mechanisms from a study of two homologues. Biochemistry 48(12):2740–2751

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Houry WA, Rothwarf DM, Scheraga HA (1994) A very fast phase in the refolding of disulfide-intact ribonuclease A: implications for the refolding and unfolding pathways. Biochemistry 33(9):2516–2530

    CAS  PubMed  Google Scholar 

  52. Kavaler J et al (1990) A set of closely related antibodies dominates the primary antibody response to the antigenic site CB of the A/PR/8/34 influenza virus hemagglutinin. J Immunol 145(7):2312–2321

    CAS  PubMed  Google Scholar 

  53. Staudt LM, Gerhard W (1983) Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin I Significant variation in repertoire expression between individual mice. J Exp Med 157(2):687–704

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Yewdell JW, Caton AJ, Gerhard W (1986) Selection of influenza A virus adsorptive mutants by growth in the presence of a mixture of monoclonal antihemagglutinin antibodies. J Virol 57(2):623–628

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ambroggio XI et al (2013) HASP server: a database and structural visualization platform for comparative models of influenza A hemagglutinin proteins. BMC Bioinformatics 14:197

    PubMed  PubMed Central  Google Scholar 

  56. Kim R, Guo JT (2010) Systematic analysis of short internal indels and their impact on protein folding. BMC Struct Biol 10:24

    PubMed  PubMed Central  Google Scholar 

  57. Shembekar N et al (2013) Isolation of a high affinity neutralizing monoclonal antibody against 2009 pandemic H1N1 virus that binds at the “Sa” antigenic site. PLoS ONE 8(1):e55516

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu R et al (2010) Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328(5976):357–360

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Khurana S et al (2011) Recombinant HA1 produced in E coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines. Vaccine 29(34):5657–5665

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Magadan JG et al (2013) Influenza A virus hemagglutinin trimerization completes monomer folding and antigenicity. J Virol 87(17):9742–9753

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bagchi B (2016) Untangling complex dynamics of biological water at protein-water interface. Proc Natl Acad Sci U S A 113(30):8355–8357

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wertz DH, Scheraga HA (1978) Influence of water on protein structur An analysis of the preferences of amino acid residues for the inside or outside and for specific conformations in a protein molecule. Macromolecules 11(1):9–15

    CAS  PubMed  Google Scholar 

  63. Bhattacharyya S et al (2013) Design of an Escherichia coli expressed HIV-1 gp120 fragment immunogen that binds to b12 and induces broad and potent neutralizing antibodies. J Biol Chem 288(14):9815–9825

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Impagliazzo A et al (2015) A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349(6254):1301–1306

    CAS  PubMed  Google Scholar 

  65. Jardine J et al (2013) Rational HIV immunogen design to target specific germline B cell receptors. Science 340(6133):711–716

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Joyce MG et al (2016) Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV. Nat Struct Mol Biol 23(9):811–820

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kanekiyo M et al (2015) Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 162(5):1090–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yassine HM et al (2015) Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat Med 21(9):1065–1070

    CAS  PubMed  Google Scholar 

  69. Jegerlehner A et al (2013) Bacterially produced recombinant influenza vaccines based on virus-like particles. PLoS ONE 8(11):e78947

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. James Crowe for providing the 2D1 antibody. The anti-H1N1 A/Puerto Rico/8/34 virus convalescent sera was provided by Dr. Jessica Flynn (Merck Research Laboratories, PA, USA). Dr. Satish Kumar Gupta provided the anti-pH1N1 A/California/07/2009 virus convalescent sera and MA-2077 antibody.

Funding

VVAM acknowledges the fellowship received from the Council of Scientific and Industrial Research, Government of India (GOI). SS is recipient of research associate fellowship from Department of Biotechnology (DBT), GOI. This work was supported in part by a grant from the DBT, GOI to RV.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experiments and analysis were performed by V VAM and SS under the supervision of RV. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Raghavan Varadarajan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallajosyula, V.A., Swaroop, S. & Varadarajan, R. Influenza Hemagglutinin Head Domain Mimicry by Rational Design. Protein J 39, 434–448 (2020). https://doi.org/10.1007/s10930-020-09930-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09930-z

Keywords

Navigation