Skip to main content
Log in

Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cecropin AD (CAD) is a hybrid peptide composed of 37 amino acids with the characters of strong antibacterial, antitumor properties and no hemolytic activity, which was regarded as a promising antibiotic candidate. Thus, a safe method to produce Cecropin AD is necessary to be found. In the study, Bacillus subtilis WB800N was employed as host strain. The CAD coding sequence fused with the signal peptide of SPsacB, the 6 × His gene and the gene of small ubiquitin-like modifier were cloned into the maltose-inducible vector pGJ148. Under the induction by 6% maltose, the recombinant fusion protein was successfully expressed and detected in culture substrate. An optimized amount (26.4 mg/L) of the recombinant CAD was purified of culture supernatant. After purification and digestion, the recombinant CAD was harvested about 4.5 mg/L with a purity of 93%. Recombinant CAD exhibited similar antimicrobial activity with synthetic CAD. This shows that the production of CAD in maltose-induced Bacillus subtilis expression system is a relatively safe method, which is vital for the application of CAD in animal husbandry production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analysed in the study are included in the published article.

References

  1. Van Boeckel TP, Brower C, Gilbert M et al (2015) Global trends in antimicrobial use in food animals. Proc Natl Acad Sci USA 112:5649–5654. https://doi.org/10.2307/26462640

    Article  PubMed  Google Scholar 

  2. Oloso N, Fagbo S, Garbati M, et al (2018) Antimicrobial resistance in food animals and the environment in Nigeria: A Review. Inter J Env Res Pub Heal 15 (6): 1284. https://doi.org/10.3390/ijerph15061284

    Article  CAS  Google Scholar 

  3. Wu Q, Patočka J, Kuča K (2018) Insect antimicrobial peptides, a mini review. Toxins 10(11):461. https://doi.org/10.3390/toxins10110461

    Article  CAS  PubMed Central  Google Scholar 

  4. Ahmed TAE, Hammami R (2018) Recent insights into structure-function relationships of antimicrobial peptides. J Food Biochem. https://doi.org/10.1111/jfbc.12546

    Article  PubMed  Google Scholar 

  5. Yang K, Su Y, Li J, Sun J, Yang Y (2012) Expression and purification of the antimicrobial peptide cecropin AD by fusion with cationic elastin-like polypeptides. Protein Expres Purif 85(2):200–203. https://doi.org/10.1016/j.pep.2012.04.007

    Article  CAS  Google Scholar 

  6. Zhu W, Gong G, Pan J, Han S, Zhang W, Hu Y, Xie L (2018) High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expres Purif 147:61–68. https://doi.org/10.1016/j.pep.2018.02.003

    Article  CAS  Google Scholar 

  7. Wibowo D, Zhao CX (2018) Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biot. https://doi.org/10.1007/s00253-018-9524-1

    Article  Google Scholar 

  8. Ovaa H, Vertegaal ACO (2018) Probing ubiquitin and SUMO conjugation and deconjugation. Biochem Soc T 46(2):423–436. https://doi.org/10.1042/bst20170086

    Article  CAS  Google Scholar 

  9. Praefcke GJK, Hofmann K, Dohmen RJ (2012) SUMO playing tag with ubiquitin. Trends Biochem Sci 37(1):23–31. https://doi.org/10.1016/j.tibs.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Sun A, Dong Y, Wei D (2017) Recombinant production and characterization of SAC, the core domain of Par-4, by SUMO fusion system. Appl Biochem Biotech 184 (4): 1155-1167. https://doi.org/10.1007/s12010-017-2599-9

    Article  CAS  PubMed  Google Scholar 

  11. Kota V, Sommer G, Hazard ES, Hardiman G, Twiss JL, Heise T (2017) SUMO modification of the RNA-binding protein la regulates cell proliferation and STAT3 protein stability. Mol Cell Biol. https://doi.org/10.1128/mcb.00129-17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Namvar S, Barkhordari F, Raigani M, Jahandar H, Nematollahi L, Davami F (2018) Cloning and soluble expression of mature α-luffin from Luffa cylindrica in E. coli using SUMO fusion protein. Turk J Biol 42:23–32. https://doi.org/10.3906/biy-1708-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32(6):286–295. https://doi.org/10.1016/j.tibs.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  14. Shimokawa-Falcão L, Caporrino M, Barbaro K, Della-Casa M, Magalhães G (2017) Toxin Fused with SUMO Tag: A new expression vector strategy to obtain recombinant venom toxins with easy tag removal inside the bacteria. TOXINS 9 (3): 82. https://doi.org/10.3390/toxins9030082

    Article  CAS  PubMed Central  Google Scholar 

  15. Lefevre M, Racedo SM, Denayrolles M et al (2017) Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans. Regul Toxicol Pharm 83:54–65. https://doi.org/10.1016/j.yrtph.2016.11.010

    Article  CAS  Google Scholar 

  16. Zuenko VA, Laktionov KS, Pravdin IV, Kravtsova LZ, Ushakova NA (2017) Effect of Bacillus subtilis in feed probiotic on the digestion of fish cultured in cages. J Ichthyol 57(1):152–157. https://doi.org/10.1134/s0032945217010143

    Article  Google Scholar 

  17. Hmani H, Daoud L, Jlidi M, et al (2017) A Bacillus subtilis strain as probiotic in poultry: selection based on in vitro functional properties and enzymatic potentialities. J Ind Microbiol Biot 44 (8): 1157-1166. https://doi.org/10.1007/s10295-017-1944-x

    Article  CAS  PubMed  Google Scholar 

  18. Song Y, Nikoloff JM, Fu G, et al (2016) Promoter screening from Bacillus subtilis in various conditions hunting for synthetic biology and industrial applications. PLOS ONE 11 (7): e0158447. https://doi.org/10.1371/journal.pone.0158447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou C, Ye B, Cheng S, Zhao L, Liu Y, Jiang J, Yan X (2019) Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microb Cell Fact. https://doi.org/10.1186/s12934-019-1159-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gu Y, Xu X, Wu Y, et al (2018) Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications. Metab Eng. https://doi.org/10.1016/j.ymben.2018.05.006

    Article  PubMed  Google Scholar 

  21. Barns KJ, Weisshaar JC (2016) Single-cell, time-resolved study of the effects of the antimicrobial peptide alamethicin on Bacillus subtilis. BBA-Biomembranes 1858 (4): 725-732. https://doi.org/10.1016/j.bbamem.2016.01.003

    Article  CAS  Google Scholar 

  22. Ji S, Li W, Baloch AR, Wang M, Li H, Cao B, Zhang H (2017) Efficient biosynthesis of a cecropin A-melittin mutant in Bacillus subtilis WB700. Sci Rep UK. https://doi.org/10.1038/srep40587

    Article  Google Scholar 

  23. Phan TTP, Nguyen HD, Schumann W (2006) Novel plasmid-based expression vectors for intra- and extracellular production of recombinant proteins in Bacillus subtilis. Protein Expres Purif 46(2):189–195. https://doi.org/10.1016/j.pep.2005.07.005

    Article  CAS  Google Scholar 

  24. Phan TTP, Nguyen HD, Schumann W (2012) Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements. J Biotechnol 157(1):167–172. https://doi.org/10.1016/j.jbiotec.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  25. Morabbi Heravi K, Wenzel M, Altenbuchner J (2011) Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors. Microb Cell Fact 10(1):83. https://doi.org/10.1186/1475-2859-10-83

    Article  CAS  PubMed Central  Google Scholar 

  26. Zhang XZ, Cui ZL, Hong Q, Li SP (2005) High-Level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl Environ Microb 71 (7): 4101-4103. https://doi.org/10.1128/aem.71.7.4101-4103.2005

    Article  CAS  Google Scholar 

  27. Ming YM, Wei ZW, Lin CY, Sheng GY (2010) Development of a Bacillus subtilis expression system using the improved Pglv promoter. Microb Cell Fact 9(1):55. https://doi.org/10.1186/1475-2859-9-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun H, Bie X, Lu F, Lu Y, Wu Y, Lu Z (2009) Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Can J Microbiol 55(8):1003–1006. https://doi.org/10.1139/w09-044

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Liu H, Yang S, Wang R, Wang T (2019) Improved expression and optimization of trehalose synthase by regulation of Pglv in Bacillus subtilis. Sci Rep. https://doi.org/10.1038/s41598-019-43172-z

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xue GP, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Meth 34 (3): 183-191

    Article  CAS  Google Scholar 

  31. Dong N, Zhu X, Chou S, Shan A, Li W, Jiang J (2014) Antimicrobial potency and selectivity of simplified symmetric-end peptides. Biomaterials 35:8028–8039

    Article  CAS  Google Scholar 

  32. Stark M, Liu LP, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Ch 46:3585–3590. https://doi.org/10.1128/AAC.46.11.3585-3590.2002

    Article  CAS  Google Scholar 

  33. Wu S, Zhang F, Huang Z et al (2012) Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli. Peptides 35(2):225–230. https://doi.org/10.1016/j.peptides.2012.03.030

    Article  CAS  PubMed  Google Scholar 

  34. Cui X, Jiang Y, Chang L, Meng L, Yu J, Wang C, Jiang X (2018) Heterologous expression of an agarase gene in Bacillus subtilis, and characterization of the agarase. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.07.118

    Article  PubMed  Google Scholar 

  35. Zhang L, Li G, Zhan N, Sun T, Cheng B, Li Y, Shan A (2019) Expression of a Pseudomonas aeruginosa-targeted antimicrobial peptide T9W in Bacillus subtilis using a maltose-inducible vector. Process Biochem. https://doi.org/10.1016/j.procbio.2019.03.008

    Article  Google Scholar 

  36. Fu LH, Wang Y, Ju JS, et al (2019) Extracellular production of active-form Streptomyces mobaraensis transglutaminase in Bacillus subtilis. Appl Microbiol Biot. https://doi.org/10.1007/s00253-019-10256-9

    Article  Google Scholar 

  37. Zhang LC, Wei DD, Zhan N et al (2020) Heterologous expression of the novel α-helical hybrid peptide PR-FO in Bacillus subtilis. Bioproc Biosyst Eng. https://doi.org/10.1007/s00449-020-02353-1

    Article  Google Scholar 

  38. Lin HJ, Xiao Joe JT, Lu WJ, et al (2020) Secretory Production of Functional Grouper Type I Interferon from Epinephelus septemfasciatus in Escherichia coli and Bacillus subtilis. Int J Mol Sci 21 (4) : 1465. https://doi.org/10.3390/ijms21041465

    Article  PubMed Central  Google Scholar 

  39. Wang Y, Liu Y, Wang Z et al (2014) Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis. Biotechnol Lett 238:41926–41936

    Google Scholar 

  40. Li W, Zhou X, Lu P (2004) Bottlenecks in the expression and secretion of heterologous proteins in Bacillus subtilis. Res Microbiol 155(8):605–610

    Article  CAS  Google Scholar 

  41. Petersen TN, Brunak S, von Heijne G et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    Article  CAS  Google Scholar 

  42. Jin FL, Xu XX, Yu XQ, Ren SX (2009) Expression and characterization of antimicrobial peptide Cecropin AD in the methylotrophic yeast. Pichia Pastoris Process Biochem 44:11–16

    Article  CAS  Google Scholar 

  43. Chen X, Zhu FM, Cao YH, Qiao SY (2009) Novel expression vector for secretion of cecropin AD in Bacillus subtilis with enhanced antimicrobial activity. Antimicrob Agents Chem 53: 3683–3689

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Grants form Natural Science Foundation of China (31672434, 31872368, 31472104), the China Agriculture Research System (CARS-35), and the Natural Science Foundation of Heilongjiang Province (TD2019C001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianping Li or Anshan Shan.

Ethics declarations

Conflict of interest

The authors declared that they had no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, X., Zhan, N. et al. Maltose Induced Expression of Cecropin AD by SUMO Technology in Bacillus subtilis WB800N. Protein J 39, 383–391 (2020). https://doi.org/10.1007/s10930-020-09908-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09908-x

Keywords

Navigation