Skip to main content

Advertisement

Log in

Defense Response in Chickpea Pod Wall due to Simulated Herbivory Unfolds Differential Proteome Profile

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

The pod wall of legumes is known to protect the developing seeds from pests and pathogens. However, the mechanism of conferring defense against insects has not yet been deciphered. Here, we have utilized 2-dimensional gel electrophoresis (2D-GE) coupled with mass spectrometry (MS/MS) to identify over expressed proteins in the pod wall of two different cultivars (commercial cultivar: JG 11 and tolerant cultivar: ICC 506-EB) of chickpea after 12 h of application of Helicoverpa armigera oral secretions (simulated herbivory). The assays were performed with a view that larvae are a voracious feeder and cause substantial damage to the pod within 12 h. A total of 600 reproducible protein spots were detected on gels, and the comparative analysis helped identify 35 (12 up-regulated, 23 down-regulated) and 20 (10 up-regulated, 10 down-regulated) differentially expressed proteins in JG 11 and ICC 506-EB, respectively. Functional classification of protein spots of each cultivar after MS/MS indicated that the differentially expressed proteins were associated with various metabolic activities. Also, stress-related proteins such as mannitol dehydrogenase (MADH), disease resistance-like protein-CSA1, serine/threonine kinase (D6PKL2), endoglucanase-19 etc. were up-regulated due to simulated herbivory. The proteins identified with a possible role in defense were further analyzed using the STRING database to advance our knowledge on their interacting partners. It decoded the involvement of several reactive oxygen species (ROS) scavengers and other proteins involved in cell wall reinforcement. The biochemical analysis also confirmed the active role of ROS scavengers during simulated herbivory. Thus, our study provides valuable new insights on chickpea-H.armigera interactions at the protein level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data sets supporting the results of this article are included within the article as supplementary or additional files.

References

  1. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory, the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  PubMed  CAS  Google Scholar 

  2. Thomma B, Eggermont K, Pennickx I, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defence-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  3. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S et al (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  4. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  PubMed  CAS  Google Scholar 

  5. Singh A, Singh IK, Verma PK (2008) Differential transcript accumulation in Cicer arietinum L. in response to a chewing insect Helicoverpa armigera and defence regulators correlate with reduced insect performance. J Exp Bot 59(9):2379–2392

    Article  PubMed  CAS  Google Scholar 

  6. Truong D, Nguyen HC, Bauwens J, Lognay G, Francis F (2017) Plant defense in response to chewing insects: proteome analysis of Arabidopsis thaliana damaged by Plutella xylostella. J Plant Interface 13(1):30–36

    Article  CAS  Google Scholar 

  7. Yin H, Yan F, Ji J, Li Y (2012) Proteomic analysis of Arabidopsis thaliana leaves infested by tobacco whitefly Bemisia tabaci (Gennadius) B biotype. Plant Mol Biol Rep 30:379–390

    Article  CAS  Google Scholar 

  8. Mozuruk J, Hunnicutt LE, Cave RD, Hunter WB, Bauscher MG (2006) Profiling transcriptional changes in Citrus sinensis (L.) Osbeck challenged by herbivory from the xylem feeding leafhopper Homalodisca coagulata (Say) by cDNA macroarray analysis. Plant Sci 170:1068–1080

    Article  CAS  Google Scholar 

  9. Major IT, Constabel CP (2006) Molecular analysis of poplar defence against herbivory: comparison of wound- and insect elicitor-induced gene expression. New Phytol 172:617–635

    Article  PubMed  CAS  Google Scholar 

  10. Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silver- leaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hui DQ, Iqbal J, Lehmann K, Gase K, Saluz HP, Baldwin IT (2003) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata, V. microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. Plant Physiol 131:1877–1893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Asano T, Kimura M, Nishiuchi T (2012) The defense response in Arabidopsis thaliana against Fusarium sporotrichioides. Proteome Sci 10(61):1–10

    Google Scholar 

  13. Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7:424

    PubMed  PubMed Central  Google Scholar 

  14. Wang X, Lu J, Chen H, Shan Z, Shen X (2017) Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Plant Cell Tissue Organ Cult 129(3):511–520

    Article  CAS  Google Scholar 

  15. Coppola V, Coppola M, Rocco M, Digilio MC, D'Ambrosio C, Renzone G, Martinelli R, Scaloni A, Pennacchio Rao R, Corrado G (2013) Transcriptomic and proteomic analysis of a compatible tomato-aphid interaction reveals a predominant salicylic acid-dependent plant response. BMC Genom 14:515

    Article  CAS  Google Scholar 

  16. Duceppe M, Cloutier C, Michaud D (2012) Wounding, insect chewing and phloem sap feeding differentially alter the leaf proteome of potato Solanum tuberosum L. Proteome Sci 10(73):1–14

    Google Scholar 

  17. Stare T, Stare K, Weckwerth W, Wienkoop S, Gruden K (2017) Comparison between proteome and transcriptome response in potato (Solanum tuberosum L.) leaves following potato virus Y (PVY) infection. Proteomes 5(3):14

    Article  PubMed Central  CAS  Google Scholar 

  18. Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2018) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 108(S1):11–S26

    Article  CAS  Google Scholar 

  19. Kaur A, Grewal SK, Singh RP, Bhardwaj RD (2017) Induced defense dynamics in plant parts is requisite for resistance to Helicoverpa armigera (Hubner) infestation in chickpea. Phytoparasitica 45:559–576

    Article  Google Scholar 

  20. Reigada C, Guimarães KF, Parra JRP (2016) Relative fitness of Helicoverpa armigera (Lepidoptera: Noctuidae) on seven host plants: a perspective for IPM in Brazil. J Insect Sci 16(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mallikarjuna N, Sharma HC, Upadhyaya HD (2007) Exploitation of wild relatives of pigeonpea and chickpea for resistance to Helicoverpa armigera. J SAT Agric Res 3(1):4

    Google Scholar 

  22. Patil SB, Goyal A, Chitgupekar SS, Kumar S, Bouhssini ME (2017) Sustainable management of chickpea pod borer-a review. Agron Sustain Dev 37:20

    Article  CAS  Google Scholar 

  23. Gowda CLL, Lateef SS, Smithson JB, Reed W (1983) Breeding for resistance to Heliothis armigera in chickpea. In: Proceedings of the National seminar on breeding crop plants for resistance to pests and diseases, School of Genetics, Tamil Nadu Agricultural University Coimbatore, Tamil Nadu, India

  24. Bhushan D, Pandey A, Choudhary MK, Datta A, Chakraborty S, Chakraborty N (2007) Comparative proteomics analysis of differentially expressed proteins in chickpea extracellular matrix during dehydration stress. Mol Cell Proteomics 6:1868–1884

    Article  PubMed  CAS  Google Scholar 

  25. Jaiswal DK, Mishra P, Subba P, Rathi D, Chakraborty S, Chakraborty N (2014) Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling. Sci Rep 4:4177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pandey A, Chakraborty S, Datta A (2008) Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7(1):88–107

    Article  PubMed  CAS  Google Scholar 

  27. Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S (2014) Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genom 15(1):949

    Article  CAS  Google Scholar 

  28. Palomares-Rius JE, Castillo P, Navas-Cortés JA, Jiménez-Díaz RM, Tena M (2011) A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5. J Proteomics 74(10):2034–2051

    Article  PubMed  CAS  Google Scholar 

  29. Pandey SP, Srivastava S, Goel R, Lakhwani D, Singh P, Asif MH, Sane AP (2017) Simulated herbivory in chickpea causes rapid changes in defense pathways and hormonal transcription networks of JA/ethylene/GA/auxin within minutes of wounding. Sci Rep 7:44729

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaur A, Grewal SK, Singh R, Kaur J (2017) Defense system in chickpea genotypes differing in tolerance to Helicoverpa armigera infestation. Ind J Plant Physiol 22(3):324–333

    Article  CAS  Google Scholar 

  31. Johnston KA, Lee MJ, Gatehouse JA, Anstee JH (1991) The partial purification and characterization of serine protease activity in midgut of larval Helicoverpa armigera. Insect Biochem 21:389–397

    Article  CAS  Google Scholar 

  32. Jongsma MA, Baker PL, Peters J, Bosch D, Stiekema WJ (1995) Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition. Proc Natl Acad Sci USA 92:8041–8045

    Article  PubMed  CAS  Google Scholar 

  33. Giri AP, Harsulkar AM, Deshpande VV, Sainani MN, Gupta VS, Ranjekar PK (1998) Chickpea defensive proteinase inhibitors can be inactivated by pod borer gut proteinases. Plant Physiol 116:393–401

    Article  PubMed Central  CAS  Google Scholar 

  34. Srinivasan A, Giri AP, Harsulkar AM, Gatehouse JA, Gupta VS (2005) A kunitz trypsin inhibitor from chickpea (Cicer arietinum L.) that exerts anti-metabolic effect on pod borer (Helicoverpa armigera) larvae. Plant Mol Biol 57:359–374

    Article  PubMed  CAS  Google Scholar 

  35. Dhanyalakshmi KH, Naika MBN, Sajeevan RS, Mathew OK, Shafi KM, Sowdhamini R, Nataraja NK (2016) An approach to function annotation for proteins of unknown function (PUFs) in the transcriptome of Indian mulberry. PLoS ONE 11(3):e0151323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Narayanamma VL, Gowda CLL, Sriramulu M, Ghaffar MA, Sharma HC (2013) Nature of gene action and maternal effects for pod borer; Helicoverpa armigera resistance and grain yield in chickpea; Cicer arietinum. Am J Plant Sci 4:26–37

    Article  Google Scholar 

  37. Sharma HC, War AR, Pathania M, Sharma SP, Akbar SM, Munghate RS (2016) Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera. Arthropod-Plant Interact 10(2):171–181

    Article  Google Scholar 

  38. Armes NJ, Bond GS, Cooters RJ (1992) The laboratory culture and development of Helicoverpa armigera. Natural Resources Institute Bulletin No. 57. Chatham (UK): Natural Resources Institute.

  39. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain treated bean plants: protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  40. Francs CCD, Thiellement HDDV (1985) Analysis of leaf proteins by two-dimensional gel electrophoresis: protease action as exemplified by ribulose bisphosphate carboxylase/oxygenase degradation and procedure to avoid proteolysis during extraction. Plant Physiol 78(1):178–182

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  42. O'Farrell PH (1997) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10):4007–4021

    Google Scholar 

  43. Mortz E, Krogh TN, Vorum H, Görg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1(11):1359–1363

    Article  PubMed  CAS  Google Scholar 

  44. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, Von Mering C (2011) The STRING database in 2011: functional interaction networks of proteins; globally integrated and scored. Nucl Acids Res 39:561–568

    Article  CAS  Google Scholar 

  45. Khatoon M, Islam E, Islam R, Rahman AA, Alam AH, Khondkar P, Rashid M, Parvin S (2013) Estimation of total phenol and in vitro antioxidant activity of Albizia procera leaves. BMC Res notes 6:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rossatto T, do Amaral MN, Benitez LC, Vighi IL, Braga E, de Magalhães Júnior AM, Maia M, da Silva PL (2017) Gene expression and activity of antioxidant enzymes in rice plants, cv. BRS AG, under saline stress. Physiol Mol Biol Plants 23(4):865–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascobate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  48. Giannopolitis CN, Reis SK (1977) Superoxide dismutases: II. Purification and quantitative relationship with water soluble protein in seedlings. Plant Physiol 59:315–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sharma HC (2001) Cotton bollworm/Legume pod borer, Helicoverpa armigera (Hu¨bner) (Noctuidae: Lepidoptera): biology and management. Crop Protection Compendium. Commonwealth Agricultural Bureau International Oxon, UK, p. 72

  50. Santamari M, Arnaiz A, Gonzalez-Melendi P, Martinez M, Diaz I (2018) Plant perception and short-term responses to phytophagous insects and mites. Int J Mol Sci 19(5):1356

    Article  CAS  Google Scholar 

  51. Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141(2):373–378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  53. Sharma P, Bhushan A, Dubey RS, Pessarakli M (2012) Reactive oxygen species; oxidative damage; and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  54. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1–13

    Article  CAS  Google Scholar 

  55. Most P, Papenbrock J (2015) Possible roles of plant sulfurtransferases in detoxification of cyanide; reactive oxygen species; selected heavy metals and arsenate. Molecules 20:1410–1423

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Stoop JM, Mooibroek H (1998) Cloning and characterization of NADP- mannitol dehydrogenase cDNA from the button mushroom; Agaricus bisporus; and its expression in response to NaCl stress. Appl Environ Microbiol 64:4689–4696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Voegele RT, Hahn M, Lohaus G, Link T, Heiser I, Mendgen K, Germany RTV (2005) Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae 1. Plant Physiol 137:190–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gill RS, Gupta AK, Taggar GK, Taggar MS (2010) Role of oxidative enzymes in plant defenses against insect herbivory. Acta Phytopathol Entomol Hung 45(2):277–290

    Article  CAS  Google Scholar 

  59. Lu F, Liang X, Lu H, Li Q, Chen Q, Zhang P, Li K, Liu G, Yan W, Song J, Duan C, Zhang L (2016) Overproduction of superoxide dismutase and catalase confers cassava resistance to Tetranychus cinnabarinus. Sci Rep 7:40179

    Article  CAS  Google Scholar 

  60. Juge N (2006) Plant protein inhibitors of cell wall degrading enzymes. Trends Plant Sci 11(7):359–367

    Article  PubMed  CAS  Google Scholar 

  61. Hao P, Liu C, Wang Y, Chen R, Tang M, Du B, Zhu L, He G (2008) Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol 146:1810–1820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Stone BA, Clarke AE (1992) Chemistry and biology of (1–3)-β-D-Glucans. Victoria; Australia: La Trobe University Press.

  63. Chen XY, Kim JY (2009) Callose synthesis in higher plants. Plant Signal Behav 4(6):489–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:984

    Article  PubMed  PubMed Central  Google Scholar 

  65. Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(86):1–10

    Google Scholar 

  66. Machado RA, Robert CA, Arce CC, Ferrieri AP, Xu S, Jimenez-Aleman GH, Baldwin IT, Erb M (2016) Auxin is rapidly induced by herbivore attack and regulates a subset of systemic, jasmonate-dependent defenses. Plant Physiol 172(1):521–532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Barbosa ICR, Zourelidou M, Willige BC, Weller B, Schwechheimer C (2014) D6 protein kinase activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev Cell 29(6):674–685

    Article  PubMed  CAS  Google Scholar 

  68. Zazimalova E, Murphy AS, Yang H, Hoyerova K, Petr Hosek P (2010) Auxin transporters-why so many ? Cold Spring Harb Perspect Biol 2(3):a001552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Naseem M, Kaltdorf M, Dandekar T (2015) The nexus between growth and defence signaling : auxin and cytokinin modulate plant immune response pathways. J Exp Bot 66(16):4885–4896

    Article  PubMed  CAS  Google Scholar 

  70. Zhou S, Lou Y, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–1498

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Tohge T, Watanabe M, Hoefgen R, Fernie AR (2013) Shikimate and phenylalanine biosynthesis in the green lineage. Front Plant Sci 4:62

    Article  PubMed  PubMed Central  Google Scholar 

  72. Picault N, Hodges M, Palmieri L, Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9:138–146

    Article  PubMed  CAS  Google Scholar 

  73. Valente C, Pasqualim P, Jacomasso T, Maurer JB, Souza EM, Martinez GR, Rocha ME, Carnieri EG, Cadena SM (2012) The involvement of PUMP from mitochondria of Araucaria angustifolia embryogenic cells in response to cold stress. Plant Sci 197:84–91

    Article  PubMed  CAS  Google Scholar 

  74. Smith AMO, Ratcliffe RG, Sweetlove LJ (2004) Activation and function of mitochondrial uncoupling protein in plants. J Biol Chem 279(50):51944–51952

    Article  PubMed  CAS  Google Scholar 

  75. Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  PubMed  CAS  Google Scholar 

  76. Fang X, Chen W, Xin Y, Zhang H, Yan C, Yu H, Liu H, Xiao W, Wang S, Zheng G, Liu H, Jin L, Ma H, Ruan S (2012) Proteomic analysis of strawberry leaves infected with Colletotrichum fragariae. J Proteomics 75:4074–4090

    Article  PubMed  CAS  Google Scholar 

  77. Xu J, Wang X, Guo W (2015) The cytochrome P450 superfamily: Key players in plant development and defense. J Integr Agric 14(9):1673–1686

    Article  CAS  Google Scholar 

  78. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J 23(7):1647–1656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wang J, Song L, Gong X, Xu J, Li M (2020) Functions of jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci 21:1446

    Article  PubMed Central  CAS  Google Scholar 

  80. Storozhenko S, Navarrete O, Ravanel S, De Brouwer V, Chaerle P, Zhang GF, Bastien O, Lambert W, Rébeillé F, Van Der Straeten D (2007) Cytosolic hydroxymethyldihydropterin pyrophosphokinase/dihydropteroate synthase from Arabidopsis thaliana: a specific role in early development and stress response. J Biol Chem 282(14):10749–10761

    Article  PubMed  CAS  Google Scholar 

  81. Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    Article  PubMed  CAS  Google Scholar 

  82. Gilles J, Basset C, Quinlivan EP, Gregory JF, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects for biofortification. Crop Sci 45:449–453

    Article  Google Scholar 

  83. Doshi SN, McDowell IF, Moat SJ, Lang D, Newcombe RG, Kredan MB, Lewis MJ, Goodfellow J (2001) Folate improves endothelial function in coronary artery disease: an effect mediated by reduction of intracellular superoxide? Arterioscler Thromb Vasc Biol 21:1196–1202

    Article  PubMed  CAS  Google Scholar 

  84. Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T (2001) Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radic Biol Med 30(12):1390–1399

    Article  PubMed  CAS  Google Scholar 

  85. Saathoff AJ, Donze T, Palmer NA, Bradshaw J, Heng-Moss T, Twigg P, Tobias CM, Lagrimini M, Sarath G (2013) Towards uncovering the roles of switchgrass peroxidases in plant processes. Front Plant Sci 4:1–12

    Article  Google Scholar 

  86. Kusnierczyk A, Winge P, Jorstad TS, Troczynska J, Rossiter JT, Bones AM (2008) Towards global understanding of plant defence against aphids–timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Plant Cell Environ 31:1097–1115

    Article  PubMed  CAS  Google Scholar 

  87. Johnson MT, Smith SD, Rausher MD (2009) Plant sex and the evolution of plant defenses against herbivores. Proc Natl Acad Sci USA 106(43):18079–18084

    Article  PubMed  Google Scholar 

  88. Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls, 1st edn. Blackwell, Oxford

    Google Scholar 

  89. Wu J, Wang L, Wunsche H, Baldwin IT, Narboh D (2013) A respiratory burst oxidase homolog in Nicotiana attenuata; is required for late defense responses after herbivore attack. J Integr Plant Biol 55(2):187–198

    Article  PubMed  CAS  Google Scholar 

  90. Van Attikum H, Bundock P, Lee L-Y, Gelvin SB, Hooykaas PJJ (2003) The Arabidopsis AtLIG4 gene is involved in the repair of DNA damage, but not in the integration of Agrobacterium T-DNA. Nucl Acids Res 31:4247–4255

    Article  PubMed  CAS  Google Scholar 

  91. Nagai S, Koide M, Takahashi S, Kikuta A, Aono M, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2007) Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiol 144:1039–1051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kloth KJ, Busscher-Lange J, Wiegers GL, Kruijer W, Buijs G, Meyer RC, Albrectsen BR, Bouwmeester HJ, Dicke M, Jongsma MA (2017) SIEVE ELEMENT-LINING CHAPERONE1 restricts aphid feeding on Arabidopsis during heat stress. Plant Cell 29(10):2450–2464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Armengot L, Marquès-Bueno MM, Jaillais Y (2016) Regulation of polar auxin transport by protein and lipid kinases. J Exp Bot 67(14):4015–4037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Anthony RG, Khan S, Costa J, Pais MS, Bogre L (2006) The arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem 281(49):37536–37546

    Article  PubMed  CAS  Google Scholar 

  95. Garcia AV, Al-Yousif M (2012) Role of AGC kinases in plant growth and stress responses. Cell Mol Life Sci 69:3259–3267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad for providing chickpea seeds for analyses. MB and SD would like to thank the ICAR-National Professor (Norman Borlaug Chair) Fund and Department of Biotechnology (DBT)-Assam Agricultural University (AAU) Centre for providing funds and the necessary facility to pursue this work. MB and SD would also like to express their sincere gratitude towards Mr Jitendra Maharana from Assam Agricultural University for helping us create well defined images to support our work. All the authors cordially acknowledge the Dr. Rukmini Govekar form Mumbai allowing us to avail the proteomic infrastructure at the Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Mumbai.

Funding

DBT, Government of India and ICAR-National Professor (Norman Borlaug Chair) Fund grant.

Author information

Authors and Affiliations

Authors

Contributions

MB, SA, and BKS designed the experiments. MB and SD performed the experiments. MB and SA analyzed the proteomics data and co-wrote the manuscript. PJH and BKS reviewed the article. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sumita Acharjee or Bidyut Kumar Sarmah.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, M., Dhar, S., Handique, P.J. et al. Defense Response in Chickpea Pod Wall due to Simulated Herbivory Unfolds Differential Proteome Profile. Protein J 39, 240–257 (2020). https://doi.org/10.1007/s10930-020-09899-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-020-09899-9

Keywords

Navigation