Skip to main content

Advertisement

Log in

Structure and Function of Alzheimer’s Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Alzheimer’s disease is the most common form of dementia, that affects millions of people worldwide. According to the widely accepted amyloid cascade hypothesis, misfolding and aggregation of Aβ peptides is the principal cause of Alzheimer’s disease. In the present mini-review, we have discussed the different structures of Aβ protein from monomer to fibrils and their arrangement in different symmetries. We have highlighted the critical amino acid residue that plays a crucial role in the early stage misfolding of Aβ monomers, Aβ fibrils arrangement in different symmetries, the elongation process and Aβ protein interaction with the membrane. We have further discussed the antibodies that are currently in clinical trial phase III for Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Uflacker A, Doraiswamy PM (2017) Alzheimer’s disease: an overview of recent developments and a look to the future. Focus 15(1):13–17

    Article  Google Scholar 

  2. Alzheimer’s Association (2016) 2016 Alzheimer’s disease facts and figures. Alzheimer’s Dement 12(4):459–509

    Article  Google Scholar 

  3. Wimo A, Guerchet M, Ali G-C, Wu Y-T, Prina AM, Winblad B, Jönsson L, Liu Z, Prince M (2017) The worldwide costs of dementia 2015 and comparisons with 2010. Alzheimer’s Dement 13(1):1–7

    Article  Google Scholar 

  4. Patterson C (2018) World Alzheimer Report 2018 The state of the art of dementia research: new frontiers

  5. Tarawneh R, Holtzman DM (2012) The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb Perspect Med 2(5):a006148

    Article  PubMed  PubMed Central  Google Scholar 

  6. Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18(6):794

    Article  CAS  PubMed  Google Scholar 

  7. Bali J, Halima SB, Felmy B, Goodger Z, Zurbriggen S, Rajendran L (2010) Cellular basis of Alzheimer’s disease. Ann Indian Acad Neurol 13(Suppl2):S89

    PubMed  PubMed Central  Google Scholar 

  8. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  PubMed  Google Scholar 

  9. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184

    Article  CAS  PubMed  Google Scholar 

  10. Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698

    Article  CAS  PubMed  Google Scholar 

  11. Reitz C (2012) Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimer’s Dis 2012:11

    Google Scholar 

  12. Armstrong RA (2014) A critical analysis of the ‘amyloid cascade hypothesis’. Folia Neuropathol 52(3):211–225

    Article  CAS  PubMed  Google Scholar 

  13. Sipe JD, Cohen AS (2000) History of the amyloid fibril. J Struct Biol 130(2–3):88–98

    Article  CAS  PubMed  Google Scholar 

  14. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Del Prete D, Checler F, Chami M (2014) Ryanodine receptors: physiological function and deregulation in Alzheimer disease. Mol Neurodegen 9(1):21

    Article  CAS  Google Scholar 

  16. Spies PE, Verbeek MM, van Groen T, Claassen J (2012) Reviewing reasons for the decreased CSF Abeta42 concentration in Alzheimer disease. Front Biosci 17:2024–2034

    Article  CAS  Google Scholar 

  17. Bergström P, Agholme L, Nazir FH, Satir TM, Toombs J, Wellington H, Strandberg J, Bontell TO, Kvartsberg H, Holmström M (2016) Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation. Sci Rep 6:29200

    Article  PubMed  PubMed Central  Google Scholar 

  18. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    Article  CAS  PubMed  Google Scholar 

  19. Yoshiike Y, Chui D-H, Akagi T, Tanaka N, Takashima A (2003) Specific compositions of amyloid-β peptides as the determinant of toxic β-aggregation. J Biol Chem 278(26):23648–23655

    Article  CAS  PubMed  Google Scholar 

  20. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Protein folding and misfolding: neurodegenerative diseases. Springer, Dordrecht, pp 21–75

    Chapter  Google Scholar 

  21. Ball KA, Phillips AH, Nerenberg PS, Fawzi NL, Wemmer DE, Head-Gordon T (2011) Homogeneous and heterogeneous tertiary structure ensembles of amyloid-β peptides. Biochemistry 50(35):7612–7628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ (1998) Solution structure of amyloid β-peptide (1–40) in a water–micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry 37(31):11064–11077

    Article  CAS  PubMed  Google Scholar 

  23. Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D’Ursi AM, Temussi PA, Picone D (2002) Solution structure of the Alzheimer amyloid β-peptide (1–42) in an apolar microenvironment: similarity with a virus fusion domain. Eur J Biochem 269(22):5642–5648

    Article  CAS  PubMed  Google Scholar 

  24. Janek K, Rothemund S, Gast K, Beyermann M, Zipper J, Fabian H, Bienert M, Krause E (2001) Study of the conformational transition of Aβ (1–42) using d-amino acid replacement analogues. Biochemistry 40(18):5457–5463

    Article  CAS  PubMed  Google Scholar 

  25. Vivekanandan S, Brender JR, Lee SY, Ramamoorthy A (2011) A partially folded structure of amyloid-beta (1–40) in an aqueous environment. Biochem Biophys Res Commun 411(2):312–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tomaselli S, Esposito V, Vangone P, van Nuland NA, Bonvin AM, Guerrini R, Tancredi T, Temussi PA, Picone D (2006) The α-to-β conformational transition of Alzheimer’s Aβ-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of β conformation seeding. ChemBioChem 7(2):257–267

    Article  CAS  PubMed  Google Scholar 

  27. Luttmann E, Fels G (2006) All-atom molecular dynamics studies of the full-length β-amyloid peptides. Chem Phys 323(1):138–147

    Article  CAS  Google Scholar 

  28. Agrawal N, Skelton AA (2017) Binding of 12-crown-4 with Alzheimer’s Aβ40 and Aβ42 monomers and its effect on their conformation: insight from molecular dynamics simulations. Mol Pharm 15(1):289–299

    Article  PubMed  CAS  Google Scholar 

  29. Valerio M, Colosimo A, Conti F, Giuliani A, Grottesi A, Manetti C, Zbilut JP (2005) Early events in protein aggregation: molecular flexibility and hydrophobicity/charge interaction in amyloid peptides as studied by molecular dynamics simulations. Proteins: Struct Funct Bioinform 58(1):110–118

    Article  CAS  Google Scholar 

  30. Miyashita N, Straub JE, Thirumalai D (2009) Structures of β-amyloid peptide 1–40, 1–42, and 1–55—the 672–726 fragment of APP—in a membrane environment with implications for interactions with γ-secretase. J Am Chem Soc 131(49):17843–17852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fändrich M (2012) Oligomeric intermediates in amyloid formation: structure determination and mechanisms of toxicity. J Mol Biol 421(4–5):427–440

    Article  PubMed  CAS  Google Scholar 

  32. Kayed R, Lasagna-Reeves CA (2013) Molecular mechanisms of amyloid oligomers toxicity. J Alzheimer’s Dis 33(s1):S67–S78

    Article  CAS  Google Scholar 

  33. Baglioni S, Casamenti F, Bucciantini M, Luheshi LM, Taddei N, Chiti F, Dobson CM, Stefani M (2006) Prefibrillar amyloid aggregates could be generic toxins in higher organisms. J Neurosci 26(31):8160–8167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Narayan P, Meehan S, Carver JA, Wilson MR, Dobson CM, Klenerman D (2012) Amyloid-β oligomers are sequestered by both intracellular and extracellular chaperones. Biochemistry 51(46):9270–9276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. He Y, Zheng M-M, Ma Y, Han X-J, Ma X-Q, Qu C-Q, Du Y-F (2012) Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem Biophys Res Commun 429(3–4):125–130

    Article  CAS  PubMed  Google Scholar 

  36. Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid β oligomers (Aβ1–42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28(4):788–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu L, Edalji R, Harlan JE, Holzman TF, Lopez AP, Labkovsky B, Hillen H, Barghorn S, Ebert U, Richardson PL (2009) Structural characterization of a soluble amyloid β-peptide oligomer. Biochemistry 48(9):1870–1877

    Article  CAS  PubMed  Google Scholar 

  38. Pham JD, Chim N, Goulding CW, Nowick JS (2013) Structures of oligomers of a peptide from β-amyloid. J Am Chem Soc 135(33):12460–12467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spencer RK, Li H, Nowick JS (2014) X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Aβ17–36. J Am Chem Soc 136(15):5595–5598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349

    Article  CAS  PubMed  Google Scholar 

  41. Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 284(8):4749–4753

    Article  CAS  PubMed  Google Scholar 

  42. Morris KL, Serpell LC (2012) X-ray fibre diffraction studies of amyloid fibrils. Springer, In Amyloid proteins, pp 121–135

    Google Scholar 

  43. Scheidt HA, Morgado I, Rothemund S, Huster D (2012) Dynamics of amyloid β fibrils revealed by solid-state NMR. J Biol Chem 287(3):2017–2021

    Article  CAS  PubMed  Google Scholar 

  44. Anderson VL, Webb WW (2011) Transmission electron microscopy characterization of fluorescently labelled amyloid β 1-40 and α-synuclein aggregates. BMC Biotechnol 11(1):125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt M, Rohou A, Lasker K, Yadav JK, Schiene-Fischer C, Fändrich M, Grigorieff N (2015) Peptide dimer structure in an Aβ (1–42) fibril visualized with cryo-EM. Proc Natl Acad Sci 112(38):11858–11863

    Article  CAS  PubMed  Google Scholar 

  46. Parbhu A, Lin H, Thimm J, Lal R (2002) Imaging real-time aggregation of amyloid beta protein (1–42) by atomic force microscopy. Peptides 23(7):1265–1270

    Article  CAS  PubMed  Google Scholar 

  47. Buchete N-V, Hummer G (2007) Structure and dynamics of parallel β-sheets, hydrophobic core, and loops in Alzheimer’s Aβ fibrils. Biophys J 92(9):3032–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Inouye H, Fraser PE, Kirschner DA (1993) Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction. Biophys J 64(2):502–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction1. J Mol Biol 273(3):729–739

    Article  CAS  PubMed  Google Scholar 

  50. Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-beta conformation. Proc Natl Acad Sci 83(2):503–507

    Article  CAS  PubMed  Google Scholar 

  51. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34(1):151–160

    Article  CAS  PubMed  Google Scholar 

  52. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete N-V, Coté SB, De Simone A, Doig AJ, Faller P, Garcia A (2015) Amyloid β protein and Alzheimer’s disease: when computer simulations complement experimental studies. Chem Rev 115(9):3518–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paravastu AK, Leapman RD, Yau W-M, Tycko R (2008) Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci 105(47):18349–18354

    Article  CAS  PubMed  Google Scholar 

  54. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci 99(26):16742–16747

    Article  CAS  PubMed  Google Scholar 

  55. Riek R, Eisenberg DS (2016) The activities of amyloids from a structural perspective. Nature 539(7628):227

    Article  PubMed  Google Scholar 

  56. Agrawal N, Skelton AA (2016) 12-crown-4 ether disrupts the patient brain-derived amyloid-β-fibril trimer: insight from all-atom molecular dynamics simulations. ACS Chem Neurosci 7(10):1433–1441

    Article  CAS  PubMed  Google Scholar 

  57. Xiao Y, Ma B, McElheny D, Parthasarathy S, Long F, Hoshi M, Nussinov R, Ishii Y (2015) Aβ (1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22(6):499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, Rosay M, Donovan KJ, Michael B, Wall J, Linse S (2016) Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. J Am Chem Soc 138(30):9663–9674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wälti MA, Ravotti F, Arai H, Glabe CG, Wall JS, Böckmann A, Güntert P, Meier BH, Riek R (2016) Atomic-resolution structure of a disease-relevant Aβ (1–42) amyloid fibril. Proc Natl Acad Sci 113(34):E4976–E4984

    Article  PubMed  CAS  Google Scholar 

  60. Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RB, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H (2017) Fibril structure of amyloid-β (1–42) by cryo–electron microscopy. Science 358(6359):116–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Watanabe-Nakayama T, Ono K, Itami M, Takahashi R, Teplow DB, Yamada M (2016) High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates. Proc Natl Acad Sci 113:5835–5840

    Article  CAS  PubMed  Google Scholar 

  62. Derreumaux P (2013) Alzheimer’s Disease: insights into low molecular weight and cytotoxic aggregates from in vitro and computer experiments: molecular basis of amyloid-beta protein aggregation and fibril formation. World Sci 7:464

    Google Scholar 

  63. Masman MF, Eisel UL, Csizmadia IG, Penke B, Enriz RD, Marrink SJ, Luiten PG (2009) In silico study of full-length amyloid β 1–42 tri-and penta-oligomers in solution. J Phys Chem B 113(34):11710–11719

    Article  CAS  PubMed  Google Scholar 

  64. Lemkul JA, Bevan DR (2010) Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics. J Phys Chem B 114(4):1652–1660

    Article  CAS  PubMed  Google Scholar 

  65. Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β (1–42) fibrils. Proc Natl Acad Sci 102(48):17342–17347

    Article  PubMed  CAS  Google Scholar 

  66. Xu Z, Paparcone R, Buehler MJ (2010) Alzheimer’s Aβ (1-40) amyloid fibrils feature size-dependent mechanical properties. Biophys J 98(10):2053–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu C, Bowers MT, Shea J-E (2010) Molecular structures of quiescently grown and brain-derived polymorphic fibrils of the Alzheimer amyloid Aβ9-40 peptide: a comparison to agitated fibrils. PLoS Comput Biol 6(3):e1000693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Xi W, Wang W, Abbott G, Hansmann UH (2016) Stability of a recently found triple-β-stranded Aβ1–42 fibril motif. J Phys Chem B 120(20):4548–4557

    Article  CAS  PubMed  Google Scholar 

  69. Miller Y, Ma B, Nussinov R (2011) The unique Alzheimer’s β-amyloid triangular fibril has a cavity along the fibril axis under physiological conditions. J Am Chem Soc 133(8):2742–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dong M, Zhao W, Hu D, Ai H, Kang B (2017) N-terminus binding preference for either tanshinone or analogue in both inhibition of amyloid aggregation and disaggregation of preformed amyloid fibrils—toward introducing a kind of novel anti-alzheimer compounds. ACS Chem Neurosci 8(7):1577–1588

    Article  CAS  PubMed  Google Scholar 

  71. Lu J-X, Qiang W, Yau W-M, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268

    Article  CAS  PubMed  Google Scholar 

  72. Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23(11):1528–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Elkins MR, Wang T, Nick M, Jo H, Lemmin T, Prusiner SB, DeGrado WF, Stöhr J, Hong M (2016) Structural polymorphism of Alzheimer’s β-amyloid fibrils as controlled by an E22 switch: a solid-state NMR study. J Am Chem Soc 138(31):9840–9852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Colletier J-P, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D (2011) Molecular basis for amyloid-β polymorphism. Proc Natl Acad Sci 108(41):16938–16943

    Article  CAS  PubMed  Google Scholar 

  75. Tycko R (2015) Amyloid polymorphism: structural basis and neurobiological relevance. Neuron 86(3):632–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hubin E, Van Nuland N, Broersen K, Pauwels K (2014) Transient dynamics of Aβ contribute to toxicity in Alzheimer’s disease. Cell Mol Life Sci 71(18):3507–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils. Science 307(5707):262–265

    Article  CAS  PubMed  Google Scholar 

  78. Fändrich M, Nyström S, Nilsson K, Böckmann A, LeVine H III, Hammarström P (2018) Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J Intern Med 283(3):218–237

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mathis CA, Wang Y, Holt DP, Huang G-F, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46(13):2740–2754

    Article  CAS  PubMed  Google Scholar 

  80. Young LJ, Schierle GSK, Kaminski CF (2017) Imaging Aβ (1–42) fibril elongation reveals strongly polarised growth and growth incompetent states. Phys Chem Chem Phys 19(41):27987–27996

    Article  CAS  PubMed  Google Scholar 

  81. Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry 39(21):6288–6295

    Article  CAS  PubMed  Google Scholar 

  82. Schwierz N, Frost CV, Geissler PL, Zacharias M (2016) Dynamics of seeded Aβ40-fibril growth from atomistic molecular dynamics simulations: kinetic trapping and reduced water mobility in the locking step. J Am Chem Soc 138(2):527–539

    Article  CAS  PubMed  Google Scholar 

  83. Bacci M, Vymětal JÍ, Mihajlovic M, Caflisch A, Vitalis A (2017) Amyloid β fibril elongation by monomers involves disorder at the tip. J Chem Theory Comput 13(10):5117–5130

    Article  CAS  PubMed  Google Scholar 

  84. Williams TL, Serpell LC (2011) Membrane and surface interactions of Alzheimer’s Aβ peptide–insights into the mechanism of cytotoxicity. FEBS J 278(20):3905–3917

    Article  CAS  PubMed  Google Scholar 

  85. Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Correlation of β-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39(33):10309–10318

    Article  CAS  PubMed  Google Scholar 

  86. Lindberg DJ, Wesen E, Björkeroth J, Rocha S, Esbjörner EK (2017) Lipid membranes catalyse the fibril formation of the amyloid-β (1–42) peptide through lipid-fibril interactions that reinforce secondary pathways. Biochim et Biophys Acta (BBA)-Biomembr 1859(10):1921–1929

    Article  CAS  Google Scholar 

  87. Xiang N, Lyu Y, Zhu X, Narsimhan G (2018) Investigation of the interaction of amyloid β peptide (11–42) oligomers with a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane using molecular dynamics simulation. Phys Chem Chem Phys 20(10):6817–6829

    Article  CAS  PubMed  Google Scholar 

  88. Di Scala C, Yahi N, Boutemeur S, Flores A, Rodriguez L, Chahinian H, Fantini J (2016) Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein. Sci Rep 6:28781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De Strooper B (2008) Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27(1):224–233

    Article  CAS  PubMed  Google Scholar 

  90. Morales R, Callegari K, Soto C (2015) Prion-like features of misfolded Aβ and tau aggregates. Virus Res 207:106–112

    Article  CAS  PubMed  Google Scholar 

  91. Stöhr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K (2012) Purified and synthetic Alzheimer’s amyloid beta (Aβ) prions. Proc Natl Acad Sci 109(27):11025–11030

    Article  PubMed  Google Scholar 

  92. Watts JC, Condello C, Stöhr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB (2014) Serial propagation of distinct strains of Aβ prions from Alzheimer’s disease patients. Proc Natl Acad Sci 111(28):10323–10328

    Article  CAS  PubMed  Google Scholar 

  93. Stroud JC, Liu C, Teng PK, Eisenberg D (2012) Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc Natl Acad Sci 109(20):7717–7722

    Article  CAS  PubMed  Google Scholar 

  94. Zhang-Haagen B, Biehl R, Nagel-Steger L, Radulescu A, Richter D, Willbold D (2016) Monomeric amyloid beta peptide in hexafluoroisopropanol detected by small angle neutron scattering. PLoS ONE 11(2):e0150267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Larson ME, Lesné SE (2012) Soluble Aβ oligomer production and toxicity. J Neurochem 120:125–139

    Article  CAS  PubMed  Google Scholar 

  96. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2(1):a006346

    Article  PubMed  PubMed Central  Google Scholar 

  97. Ghosh A, Pradhan N, Bera S, Datta A, Krishnamoorthy J, Jana NR, Bhunia A (2017) Inhibition and degradation of amyloid beta (Aβ40) fibrillation by designed small peptide: a combined spectroscopy, microscopy, and cell toxicity study. ACS Chem Neurosci 8(4):718–722

    Article  CAS  PubMed  Google Scholar 

  98. Caltagirone C, Ferrannini L, Marchionni N, Nappi G, Scapagnini G, Trabucchi M (2012) The potential protective effect of tramiprosate (homotaurine) against Alzheimer’s disease: a review. Aging Clin Exp Res 24(6):580–587

    CAS  PubMed  Google Scholar 

  99. Shahzad A (2015) Translational medicine: tools and techniques. Academic Press, London

    Google Scholar 

  100. Martineau E, De Guzman JM, Rodionova L, Kong X, Mayer PM, Aman AM (2010) Investigation of the noncovalent interactions between anti-amyloid agents and amyloid β peptides by ESI-MS. J Am Soc Mass Spectrom 21(9):1506–1514

    Article  CAS  PubMed  Google Scholar 

  101. Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J (2007) Targeting soluble Aβ peptide with tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 28(4):537–547

    Article  CAS  PubMed  Google Scholar 

  102. Watson R (2015) Foods and dietary supplements in the prevention and treatment of disease in older adults. Academic Press, London, p 398

    Google Scholar 

  103. Crespi GA, Hermans SJ, Parker MW, Miles LA (2015) Molecular basis for mid-region amyloid-β capture by leading Alzheimer’s disease immunotherapies. Sci Rep 5:9649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Siemers ER, Friedrich S, Dean RA, Gonzales CR, Farlow MR, Paul SM, DeMattos RB (2010) Safety and changes in plasma and cerebrospinal fluid amyloid β after a single administration of an amyloid β monoclonal antibody in subjects with Alzheimer disease. Clin Neuropharmacol 33(2):67–73

    Article  CAS  PubMed  Google Scholar 

  105. Farlow M, Arnold SE, Van Dyck CH, Aisen PS, Snider BJ, Porsteinsson AP, Friedrich S, Dean RA, Gonzales C, Sethuraman G (2012) Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimer’s Dement 8(4):261–271

    Article  CAS  Google Scholar 

  106. Sacks CA, Avorn J, Kesselheim AS (2017) The failure of Solanezumab-how the Fda saved taxpayers billions. N Engl J Med 376(18):1706–1708

    Article  PubMed  Google Scholar 

  107. van Dyck CH (2018) Anti-amyloid-β monoclonal antibodies for Alzheimer’s disease: pitfalls and promise. Biol Psychiat 83(4):311–319

    Article  PubMed  CAS  Google Scholar 

  108. La Porte SL, Bollini SS, Lanz TA, Abdiche YN, Rusnak AS, Ho W-H, Kobayashi D, Harrabi O, Pappas D, Mina EW (2012) Structural basis of C-terminal β-amyloid peptide binding by the antibody ponezumab for the treatment of Alzheimer’s disease. J Mol Biol 421(4–5):525–536

    Article  PubMed  CAS  Google Scholar 

  109. Feinberg H, Saldanha JW, Diep L, Goel A, Widom A, Veldman GM, Weis WI, Schenk D, Basi GS (2014) Crystal structure reveals conservation of amyloid-β conformation recognized by 3D6 following humanization to bapineuzumab. Alzheimer’s Res Ther 6(3):31

    Article  CAS  Google Scholar 

  110. Miles LA, Crespi GA, Doughty L, Parker MW (2013) Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci Rep 3:1302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, Tuchman M, Gass A, Fiebach JB, Hill D (2016) Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimer’s Res Ther 8(1):18

    Article  CAS  Google Scholar 

  112. Tian Y, Zhang X, Li Y, Shoup TM, Teng X, Elmaleh DR, Moore A, Ran C (2014) Crown ethers attenuate aggregation of amyloid beta of Alzheimer’s disease. Chem Commun 50(99):15792–15795

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.A. would like to thank College of Health Sciences, UKZN, South Africa for providing Honorary Research Fellow position, and We would like to thank Centre of High performance (CHPC), Cape Town, South Africa for computational resources. We want to thank Prof. Thirumala Govender for proofreading support and Charlotte Ramadhin for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikhil Agrawal or Adam A. Skelton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, N., Skelton, A.A. Structure and Function of Alzheimer’s Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Protein J 38, 425–434 (2019). https://doi.org/10.1007/s10930-019-09854-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09854-3

Keywords

Navigation