Abstract
Protein translocation and membrane integration are fundamental, conserved processes. After or during ribosomal protein synthesis, precursor proteins containing an N-terminal signal sequence are directed to a conserved membrane protein complex called the Sec translocon (also known as the Sec translocase) in the endoplasmic reticulum membrane in eukaryotic cells, or the cytoplasmic membrane in bacteria. The Sec translocon comprises the Sec61 complex in eukaryotic cells, or the SecY complex in bacteria, and mediates translocation of substrate proteins across/into the membrane. Several membrane proteins are associated with the Sec translocon. In Escherichia coli, the membrane protein YidC functions not only as a chaperone for membrane protein biogenesis along with the Sec translocon, but also as an independent membrane protein insertase. To understand the molecular mechanism underlying these dynamic processes at the membrane, high-resolution structural models of these proteins are needed. This review focuses on X-ray crystallographic analyses of the Sec translocon and YidC and discusses the structural basis for protein translocation and integration.
Similar content being viewed by others
References
Rapoport TA, Li L, Park E (2017) Structural and mechanistic insights into protein translocation. Annu Rev Cell Dev Biol 33:369–390. https://doi.org/10.1146/annurev-cellbio-100616-060439
Tsirigotaki A, De Geyter J, Sostaric N, Economou A, Karamanou S (2017) Protein export through the bacterial Sec pathway. Nat Rev Microbiol 15:21–36. https://doi.org/10.1038/nrmicro.2016.161
Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. J Cell Biol 67:835–862
Akopian D, Shen K, Zhang X, Shan SO (2013) Signal recognition particle: an essential protein-targeting machine. Annu Rev Biochem 82:693–721. https://doi.org/10.1146/annurev-biochem-072711-164732
Matlack KE, Misselwitz B, Plath K, Rapoport TA (1999) BiP acts as a molecular ratchet during posttranslational transport of prepro-α factor across the ER membrane. Cell 97:553–564. https://doi.org/10.1016/S0092-8674(00)80767-9
Chatzi KE, Sardis MF, Economou A, Karamanou S (2014) SecA-mediated targeting and translocation of secretory proteins. Biochim Biophys Acta 1843:1466–1474. https://doi.org/10.1016/j.bbamcr.2014.02.014
Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W (1990) The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63:269–279. https://doi.org/10.1016/0092-8674(90)90160-G
Economou A, Wickner W (1994) SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835–843. https://doi.org/10.1016/S0092-8674(94)90582-7
Braunger K et al (2018) Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum. Science 360:215–219. https://doi.org/10.1126/science.aar7899
Pfeffer S et al (2017) Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun 8:14516. https://doi.org/10.1038/ncomms14516
Tsukazaki T (2018) Structure-based working model of SecDF, a proton-driven bacterial protein translocation factor. FEMS Microbiol Lett 365:fny112. https://doi.org/10.1093/femsle/fny112
Duong F, Wickner W (1997) Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16:2756–2768. https://doi.org/10.1093/emboj/16.10.2756
Tsukazaki T et al (2011) Structure and function of a membrane component SecDF that enhances protein export. Nature 474:235–238. https://doi.org/10.1038/nature09980
Furukawa A, Nakayama S, Yoshikaie K, Tanaka Y, Tsukazaki T (2018) Remote coupled drastic β-barrel to β-sheet transition of the protein translocation motor. Structure 26:485–489. https://doi.org/10.1016/j.str.2018.01.002
Furukawa A et al (2017) Tunnel formation inferred from the I-form structures of the proton-driven protein secretion motor SecDF. Cell Rep 19:895–901. https://doi.org/10.1016/j.celrep.2017.04.030
Kiefer D, Kuhn A (2018) YidC-mediated membrane insertion. FEMS Microbiol Lett 365:fny106. https://doi.org/10.1093/femsle/fny106
Hennon SW, Soman R, Zhu L, Dalbey RE (2015) YidC/Alb3/Oxa1 Family of Insertases. J Biol Chem 290:14866–14874. https://doi.org/10.1074/jbc.R115.638171
Nishikawa H, Sasaki M, Nishiyama KI (2017) Membrane insertion of F0 c subunit of F0F1 ATPase depends on glycolipozyme MPIase and is stimulated by YidC. Biochem Biophys Res Commun 487:477–482. https://doi.org/10.1016/j.bbrc.2017.04.095
Nishiyama K et al (2012) MPIase is a glycolipozyme essential for membrane protein integration. Nat Commun 3:1260. https://doi.org/10.1038/ncomms2267
Wang P, Dalbey RE (2011) Inserting membrane proteins: the YidC/Oxa1/Alb3 machinery in bacteria, mitochondria, and chloroplasts. Biochim Biophys Acta 1808:866–875. https://doi.org/10.1016/j.bbamem.2010.08.014
van den Berg B et al (2004) X-ray structure of a protein-conducting channel. Nature 427:36–44. https://doi.org/10.1038/nature02218
du Plessis DJ, Nouwen N, Driessen AJ (2011) The Sec translocase. Biochim Biophys Acta 1808:851–865. https://doi.org/10.1016/j.bbamem.2010.08.016
Tsukazaki T et al (2008) Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455:988–991. https://doi.org/10.1038/nature07421
Egea PF, Stroud RM (2010) Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci USA 107:17182–17187. https://doi.org/10.1073/pnas.1012556107
Zimmer J, Nam Y, Rapoport TA (2008) Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455:936–943. https://doi.org/10.1038/nature07335
Li L et al (2016) Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature 531:395–399. https://doi.org/10.1038/nature17163
Tanaka Y et al (2015) Crystal structures of SecYEG in lipidic cubic phase elucidate a precise resting and a peptide-bound state. Cell Rep 13:1561–1568. https://doi.org/10.1016/j.celrep.2015.10.025
Li W et al (2007) The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol Cell 26:511–521. https://doi.org/10.1016/j.molcel.2007.05.002
Flower AM, Hines LL, Pfennig PL (2000) SecG is an auxiliary component of the protein export apparatus of Escherichia coli. Mol Gen Genet 263:131–136. https://doi.org/10.1007/s004380050039
Nishiyama K, Hanada M, Tokuda H (1994) Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 13:3272–3277
Bost S, Belin D (1995) A new genetic selection identifies essential residues in SecG, a component of the Escherichia coli protein export machinery. EMBO J 14:4412–4421
Brundage L, Hendrick JP, Schiebel E, Driessen AJ, Wickner W (1990) The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62:649–657. https://doi.org/10.1016/0092-8674(90)90111-Q
Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA (1998) Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94:795–807. https://doi.org/10.1016/S0092-8674(00)81738-9
Tam PC, Maillard AP, Chan KK, Duong F (2005) Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J 24:3380–3388. https://doi.org/10.1038/sj.emboj.7600804
Allen WJ et al (2016) Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation. eLife 5:e15598. https://doi.org/10.7554/elife.15598
Cannon KS, Or E, Clemons WM Jr, Shibata Y, Rapoport TA (2005) Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J Cell Biol 169:219–225. https://doi.org/10.1083/jcb.200412019
Ge Y, Draycheva A, Bornemann T, Rodnina MV, Wintermeyer W (2014) Lateral opening of the bacterial translocon on ribosome binding and signal peptide insertion. Nat Commun 5:5263. https://doi.org/10.1038/ncomms6263
Bischoff L, Wickles S, Berninghausen O, van der Sluis EO, Beckmann R (2014) Visualization of a polytopic membrane protein during SecY-mediated membrane insertion. Nat Commun 5:4103. https://doi.org/10.1038/ncomms5103
Gogala M et al (2014) Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506:107–110. https://doi.org/10.1038/nature12950
Park E et al (2014) Structure of the SecY channel during initiation of protein translocation. Nature 506:102–106. https://doi.org/10.1038/nature12720
Voorhees RM, Fernandez IS, Scheres SH, Hegde RS (2014) Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157:1632–1643. https://doi.org/10.1016/j.cell.2014.05.024
Voorhees RM, Hegde RS (2016) Structure of the Sec61 channel opened by a signal sequence. Science 351:88–91. https://doi.org/10.1126/science.aad4992
Pfeffer S et al (2015) Structure of the native Sec61 protein-conducting channel. Nat Commun 6:8403. https://doi.org/10.1038/ncomms9403
Jomaa A, Boehringer D, Leibundgut M, Ban N (2016) Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun 7:10471. https://doi.org/10.1038/ncomms10471
Kedrov A, Kusters I, Krasnikov VV, Driessen AJ (2011) A single copy of SecYEG is sufficient for preprotein translocation. EMBO J 30:4387–4397. https://doi.org/10.1038/emboj.2011.314
Park E, Rapoport TA (2012) Bacterial protein translocation requires only one copy of the SecY complex in vivo. J Cell Biol 198:881–893. https://doi.org/10.1083/jcb.201205140
Dalal K, Chan CS, Sligar SG, Duong F (2012) Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc Natl Acad Sci USA 109:4104–4109. https://doi.org/10.1073/pnas.1117783109
Osborne AR, Rapoport TA (2007) Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129:97–110. https://doi.org/10.1016/j.cell.2007.02.036
Kedrov A et al (2016) Structural dynamics of the YidC: ribosome complex during membrane protein biogenesis. Cell Rep 17:2943–2954. https://doi.org/10.1016/j.celrep.2016.11.059
Tanaka Y et al (2018) 2.8-Å crystal structure of Escherichia coli YidC revealing all core regions, including flexible C2 loop. Biochem Biophys Res Commun 505:141–145. https://doi.org/10.1016/j.bbrc.2018.09.043
Kumazaki K et al (2014) Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:516–520. https://doi.org/10.1038/nature13167
Kumazaki K et al (2014) Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep 4:7299. https://doi.org/10.1038/srep07299
Xin Y et al (2018) Structure of YidC from Thermotoga maritima and its implications for YidC-mediated membrane protein insertion. FASEB J 32:2411–2421. https://doi.org/10.1096/fj.201700893RR
Kedrov A et al (2013) Elucidating the native architecture of the YidC: ribosome complex. J Mol Biol 425:4112–4124. https://doi.org/10.1016/j.jmb.2013.07.042
Wickles S et al (2014) A structural model of the active ribosome-bound membrane protein insertase YidC. elife 3:e03035. https://doi.org/10.7554/elife.03035
Spann D, Pross E, Chen Y, Dalbey RE, Kuhn A (2018) Each protomer of a dimeric YidC functions as a single membrane insertase. Sci Rep 8:589. https://doi.org/10.1038/s41598-017-18830-9
Kohler R et al (2009) YidC and Oxa1 form dimeric insertion pores on the translating ribosome. Mol Cell 34:344–353. https://doi.org/10.1016/j.molcel.2009.04.019
Lotz M, Haase W, Kuhlbrandt W, Collinson I (2008) Projection structure of yidC: a conserved mediator of membrane protein assembly. J Mol Biol 375:901–907. https://doi.org/10.1016/j.jmb.2007.10.089
Petriman NA et al (2018) The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci Rep 8:578. https://doi.org/10.1038/s41598-017-19019-w
Klenner C, Kuhn A (2012) Dynamic disulfide scanning of the membrane-inserting Pf3 coat protein reveals multiple YidC substrate contacts. J Biol Chem 287:3769–3776. https://doi.org/10.1074/jbc.M111.307223
Klenner C, Yuan J, Dalbey RE, Kuhn A (2008) The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis. FEBS Lett 582:3967–3972. https://doi.org/10.1016/j.febslet.2008.10.044
Jiang F et al (2003) Defining the regions of Escherichia coli YidC that contribute to activity. J Biol Chem 278:48965–48972. https://doi.org/10.1074/jbc.M307362200
Xie K, Kiefer D, Nagler G, Dalbey RE, Kuhn A (2006) Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry 45:13401–13408. https://doi.org/10.1021/bi060826z
Sachelaru I et al (2013) YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J Biol Chem 288:16295–16307. https://doi.org/10.1074/jbc.M112.446583
Schulze RJ et al (2014) Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proc Natl Acad Sci USA 111:4844–4849. https://doi.org/10.1073/pnas.1315901111
Chen Y, Soman R, Shanmugam SK, Kuhn A, Dalbey RE (2014) The role of the strictly conserved positively charged residue differs among the Gram-positive, Gram-negative, and chloroplast YidC homologs. J Biol Chem 289:35656–35667. https://doi.org/10.1074/jbc.M114.595082
Shimokawa-Chiba N et al (2015) Hydrophilic microenvironment required for the channel-independent insertase function of YidC protein. Proc Natl Acad Sci USA 112:5063–5068. https://doi.org/10.1073/pnas.1423817112
Geng Y et al (2015) Role of the cytosolic loop C2 and the C-terminus of YidC in ribosome binding and insertion activity. J Biol Chem 290:17250–17261. https://doi.org/10.1074/jbc.M115.650309
Seitl I, Wickles S, Beckmann R, Kuhn A, Kiefer D (2014) The C-terminal regions of YidC from Rhodopirellula baltica and Oceanicaulis alexandrii bind to ribosomes and partially substitute for SRP receptor function in Escherichia coli. Mol Microbiol 91:408–421. https://doi.org/10.1111/mmi.12465
Chen Y et al (2017) YidC insertase of Escherichia coli: water accessibility and membrane shaping. Structure 25:1403–1414. https://doi.org/10.1016/j.str.2017.07.008
Noinaj N et al (2013) Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501:385–390. https://doi.org/10.1038/nature12521
Anghel SA, McGilvray PT, Hegde RS, Keenan RJ (2017) Identification of Oxa1 homologs operating in the eukaryotic endoplasmic reticulum. Cell Rep 21:3708–3716. https://doi.org/10.1016/j.celrep.2017.12.006
Borowska MT, Dominik PK, Anghel SA, Kossiakoff AA, Keenan RJ (2015) A YidC-like protein in the archaeal plasma membrane. Structure 23:1715–1724. https://doi.org/10.1016/j.str.2015.06.025
Nagamori S, Smirnova IN, Kaback HR (2004) Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53–62. https://doi.org/10.1083/jcb.200402067
Serdiuk T et al (2016) YidC assists the stepwise and stochastic folding of membrane proteins. Nat Chem Biol 12:911–917. https://doi.org/10.1038/nchembio.2169
Yu Z, Koningstein G, Pop A, Luirink J (2008) The conserved third transmembrane segment of YidC contacts nascent Escherichia coli inner membrane proteins. J Biol Chem 283:34635–34642. https://doi.org/10.1074/jbc.M804344200
Botte M et al (2016) A central cavity within the holo-translocon suggests a mechanism for membrane protein insertion. Sci Rep 6:38399. https://doi.org/10.1038/srep38399
Urbanus ML et al (2002) Targeting, insertion, and localization of Escherichia coli YidC. J Biol Chem 277:12718–12723
von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J 5:3021–3027
Itskanov S, Park E (2019) Structure of the posttranslational Sec protein-translocation channel complex from yeast. Science 363:84–87. https://doi.org/10.1126/science.aav6740
Wu X, Cabanos C, Rapoport TA (2019) Structure of the post-translational protein translocation machinery of the ER membrane. Nature 566:136–139. https://doi.org/10.1038/s41586-018-0856-x
Sugano Y, Furukawa A, Nureki O, Tanaka Y, Tsukazaki T (2017) SecY-SecA fusion protein retains the ability to mediate protein transport. PLoS ONE 12:e0183434. https://doi.org/10.1371/journal.pone.0183434
Kedrov A, Kusters I, Driessen AJ (2013) Single-molecule studies of bacterial protein translocation. Biochemistry 52:6740–6754. https://doi.org/10.1021/bi400913x
Taufik I, Kedrov A, Exterkate M, Driessen AJ (2013) Monitoring the activity of single translocons. J Mol Biol 425:4145–4153. https://doi.org/10.1016/j.jmb.2013.08.012
Haruyama T et al (2019) Single unit imaging of membrane protein embedded nanodiscs from two oriented sides by high-speed atomic force microscopy. Structure 27:152–160. https://doi.org/10.1016/j.str.2018.09.005
Acknowledgments
I thank K. Abe for providing secretarial assistance. This review was supported by the JSPS/MEXT KAKENHI (Grant Nos. JP26119007, JP18H02405, and JP18KK0197).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tsukazaki, T. Structural Basis of the Sec Translocon and YidC Revealed Through X-ray Crystallography. Protein J 38, 249–261 (2019). https://doi.org/10.1007/s10930-019-09830-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10930-019-09830-x