Skip to main content
Log in

Comparative Modeling and Evaluation of Leukotriene B4 Receptors for Selective Drug Discovery Towards the Treatment of Inflammatory Diseases

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Leukotriene B4 (LTB4) exerts its biological effects through stimulation of specific G protein-coupled receptors (GPCRs)—namely BLT1 and BLT2. Due to the absence of human BLT1 and BLT2 crystal structures, the current study was set to predict the 3D structures of these two receptors for structure-based anti-inflammatory drug discovery. Homology modeling of the BLT1 receptor was first constructed, based on various X-ray and NMR GPCR templates, followed by molecular dynamics (MD) refinement. Using a single-template approach, nine well-established alignment methods and ten secondary structure prediction methods during the backbone generation were implemented and assessed. The binding sites of the BLT1 receptor were then mapped using fifteen chemical probes with the help of FTMAP and AutoDock Vina 4.2 software. Model validation was performed through the docking of eight specific antagonists that have experimental inhibition constants (ki) towards BLT1. The antagonists-BLT1 docked structures were then subjected to AMBER-based molecular mechanical minimization and the corresponding binding energies were calculated using molecular mechanics–generalized Born surface area (MM/GBSA) approach. According to the results, the most energetically stable models were constructed using SAlign method for the alignment process and PSIPRED for secondary structure prediction. In comparison, the refined BLT1 model built on 2KS9 as an NMR template has the lowest DOPE energy compared to those built on 4EA3 and 4XT1 as X-ray templates. According to the mapping results, two main binding sites were identified: one was among TMs II, III and VII and the other was among TMs III, IV and V. For the antagonists, correlation between binding energies and experimental data was in a good agreement, with a correlation coefficient (R2 value) of 0.91. Due to the great amino acid sequence similarity between BLT1 and BLT2 receptors (calculated as 45.2%), BLT2 model was constructed based on the predicted BLT1 model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Michino M, Abola E, Participant GPCRD 2008, Brooks CL, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463

    Article  CAS  Google Scholar 

  2. Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74:1–17

    Article  CAS  Google Scholar 

  3. Latek D, Pasznik P, Carlomagno T, Filipek S (2013) Towards improved quality of GPCR models by usage of multiple templates and profile-profile comparison. PLoS ONE 8:e56742–e56751

    Article  CAS  Google Scholar 

  4. Yarnitzky T, Levit A, Niv MY (2010) Homology modeling of G-protein-coupled receptors with X-ray structures on the rise. Curr Opin Drug Discov Dev 13:317–325

    CAS  Google Scholar 

  5. Cavasotto CN, Phatak SS (2009) Homology modeling in drug discovery: current trends and applications. Drug Discov Today 14:676–683

    Article  CAS  Google Scholar 

  6. Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Status of GPCR modeling and docking as reflected by community-wide GPCR dock 2010 assessment. Structure 19:1108–1126

    Article  CAS  Google Scholar 

  7. Tager AM, Luster AD (2003) BLT1 and BLT2: the leukotriene B4 receptors. Prostaglandins Leukot Essent Fat Acids 69:123–134

    Article  CAS  Google Scholar 

  8. Liu M, Yokomizo T (2015) The role of leukotrienes in allergic diseases. Allergol Int 64:17–26

    Article  CAS  Google Scholar 

  9. Mathis SP, Jala VR, Lee DM, Haribabu B (2010) Nonredundant roles for leukotriene receptors BLT1 and BLT2 in inflammatory arthritis. J Immunol 185:3049–3056

    Article  CAS  Google Scholar 

  10. Hori T, Okuno T, Hirata K, Yamashita K, Kawano Y, Yamamoto M, Hato M, Nakamura M, Shimizu T, Yokomizo T, Miyano M, Yokoyama S (2018) Na+-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nat Chem Biol 14:262–269

    Article  CAS  Google Scholar 

  11. Okuno T, Ishitani T, Yokomizo T (2015) Biochemical characterization of three BLT receptors in Zebrafish. PLoS ONE 10:1–19

    Article  Google Scholar 

  12. Okuno T, Yokomizo T, Hori T, Miyano M, Shimizu T (2005) Leukotriene B4 receptor and the function of its helix 8. J Biol Chem 280:32049–32052

    Article  CAS  Google Scholar 

  13. Lavigne R-P, Stanková J, Chen MZ, Gouill CL, Gaudreau PR, Beaulieu M-E (2004) Structural determinants regulating expression of the high affinity leukotriene B4 receptor. J Biol Chem 279:10338–10345

    Article  Google Scholar 

  14. Martin A, Damian M, Laguerre M, Parello J, Pucci B, Serre L, Mary S, Marie J, Banères J-L (2009) Engineering a G protein-coupled receptor for structural studies: stabilization of the BLT1 receptor ground state. Protein Sci 18:727–734

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 54:5.6.1–5.6.37

  16. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  Google Scholar 

  17. Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  CAS  Google Scholar 

  18. Rice P, Longden I, Bleasby A (2000) EMBOSS: the european molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  Google Scholar 

  19. Chang J-M, Di Tommaso P, Taly J-F, Notredame C (2012) Accurate multiple sequence alignment of transmembrane proteins with PSI-Coffee. BMC Bioinform 13:1–7

    Article  Google Scholar 

  20. Floden EW, Tommaso PD, Chatzou M, Magis C, Notredame C, Chang J-M (2016) PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases. Nucleic Acids Res 44:W339–W343

    Article  CAS  Google Scholar 

  21. Braberg H, Webb BM, Tjioe E, Pieper U, Sali A, Madhusudhan MS (2012) SALIGN: a web server for alignment of multiple protein sequences and structures. Bioinformatics 28:2072–2073

    Article  CAS  Google Scholar 

  22. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539–539

    Article  Google Scholar 

  23. Simossis VA, Heringa J (2005) PRALINE: a multiple sequence alignment toolbox that integrates homology-extended and secondary structure information. Nucleic Acids Res 33:W289–W294

    Article  CAS  Google Scholar 

  24. Joyeux L, Penczek PA (2002) Efficiency of 2D alignment methods. Ultramicroscopy 92:33–46

    Article  CAS  Google Scholar 

  25. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  Google Scholar 

  26. Sen TZ, Jernigan RL, Garnier J, Kloczkowski A (2005) GOR V server for protein secondary structure prediction. Bioinformatics 21:2787–2788

    Article  CAS  Google Scholar 

  27. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  CAS  Google Scholar 

  28. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  Google Scholar 

  29. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036

    Article  Google Scholar 

  30. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720

    Article  CAS  Google Scholar 

  31. Hofmann K, WS (1993) TMBASE—a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  32. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580

    Article  CAS  Google Scholar 

  33. Lin K, Simossis VA, Taylor WR, Heringa J (2005) A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21:152–159

    Article  CAS  Google Scholar 

  34. Rost B, Yachdav G, Liu J (2004) The predictprotein server. Nucleic Acids Res 32:W321–W326

    Article  CAS  Google Scholar 

  35. Bernhofer M, Kloppmann E, Reeb J, Rost B (2016) TMSEG: novel prediction of transmembrane helices. Proteins Struct Funct Bioinform 84:1706–1716

    Article  CAS  Google Scholar 

  36. Miao Z, Cao Y (2016) Quantifying side-chain conformational variations in protein structure. Sci Rep 6:1–10

    Article  CAS  Google Scholar 

  37. Miao Z, Cao Y, Jiang T (2011) RASP: rapid modeling of protein side chain conformations. Bioinformatics 27:3117–3122

    Article  CAS  Google Scholar 

  38. Wang Q, Canutescu AA, Dunbrack RL (2008) SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling. Nat Protoc 3:1832–1847

    Article  CAS  Google Scholar 

  39. Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Gohlke H, Goetz AW, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossváry I, Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B, Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) Amber 14. University of California, San Francisco

    Google Scholar 

  40. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    Article  CAS  Google Scholar 

  41. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Seeliger D, de Groot BL (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput-Aided Mol Des 24:417–422

    Article  CAS  Google Scholar 

  43. Ngan CH, Bohnuud T, Mottarella SE, Beglov D, Villar EA, Hall DR, Kozakov D, Vajda S (2012) FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Res 40:W271–W275

    Article  CAS  Google Scholar 

  44. Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, Xia B, Beglov D, Vajda S (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10:733–755

    Article  CAS  Google Scholar 

  45. Forli S, Huey R, Pique ME, Sanner M, Goodsell DS, Olson AJ (2016) Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919

    Article  CAS  Google Scholar 

  46. SZYBKI 1.9.0.3 (2016) OpenEye Scientific Software, Santa Fe

  47. Massova I, Kollman P (2000) Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect Drug Discov Des 18:113–135

    Article  CAS  Google Scholar 

  48. Morales JL, Nocedal J (2000) Automatic preconditioning by limited memory Quasi-Newton updating. SIAM J Optim 10:1079–1096

    Article  Google Scholar 

  49. Im W, Feig M, Brooks CL (2003) An implicit membrane generalized Born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85:2900–2918

    Article  CAS  Google Scholar 

  50. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision E01 edn. Gaussian Inc., Wallingford

    Google Scholar 

  52. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  53. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  54. Costanzi S (2012) Homology modeling of class A G protein-coupled receptors. Methods Mol Biol 857:259–279

    Article  CAS  Google Scholar 

  55. Dalton JAR, Jackson RM (2007) An evaluation of automated homology modelling methods at low target–template sequence similarity. Bioinformatics 23:1901–1908

    Article  CAS  Google Scholar 

  56. Ji Y-Y, Li Y-Q (2010) The role of secondary structure in protein structure selection. Eur Phys J E 32:103–107

    Article  CAS  Google Scholar 

  57. King RD, Sternberg MJ (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci 5:2298–2310

    Article  CAS  Google Scholar 

  58. Singh M, Sandhu PS, Kaur RK (2008) Protein secondary structure prediction. World Acad Sci Eng Technol 42:458–461

    Google Scholar 

  59. Rossi KA, Weigelt CA, Nayeem A, Krystek SR (2007) Loopholes and missing links in protein modeling. Protein Sci 16:1999–2012

    Article  CAS  Google Scholar 

  60. Nair PC, Miners JO (2014) Molecular dynamics simulations: from structure function relationships to drug discovery. Silico Pharmacol 2:1–4

    Article  Google Scholar 

  61. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:1–9

    Article  Google Scholar 

  62. Liu G, Li Z, Chiang Y, Acton T, Montelione GT, Murray D, Szyperski T (2005) High-quality homology models derived from NMR and X-ray structures of E. coli proteins YgdK and Suf E suggest that all members of the YgdK/Suf E protein family are enhancers of cysteine desulfurases. Protein Sci 14:1597–1608

    Article  CAS  Google Scholar 

  63. Basu S, Jala VR, Mathis S, Rajagopal ST, Del Prete A, Maturu P, Trent JO, Haribabu B (2007) Critical role for polar residues in coupling leukotriene B4 binding to signal transduction in BLT1. J Biol Chem 282:10005–10017

    Article  CAS  Google Scholar 

  64. Marder P, Sawyer JS, Froelich LL, Mann LL, Spaethe SM (1995) Blockade of human neutrophil activation by 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid (LY293111), a novel leukotriene B4 receptor antagonist. Biochem Pharmacol 49:1683–1690

    Article  CAS  Google Scholar 

  65. Showell HJ, Breslow R, Conklyn MJ, Hingorani GP, Koch K (1996) Characterization of the pharmacological profile of the potent LTB4 antagonist CP-105,696 on murine LTB4 receptors in vitro. Br J Pharmacol 117:1127–1132

    Article  CAS  Google Scholar 

  66. Jackson WT, Froelich LL, Boyd RJ, Schrementi JP, Saussy DL, Schultz RM, Sawyer JS, Sofia MJ, Herron DK, Goodson T, Snyder DW, Pechous PA, Spaethe SM, Roman CR, Fleisch JH (1999) Pharmacologic actions of the second-generation leukotriene B4 receptor antagonist LY293111: in vitro studies. J Pharmacol Exp Ther 288:286–294

    CAS  PubMed  Google Scholar 

  67. Hansel TT, Barnes PJ (2001) New drugs for asthma, allergy and COPD, vol 31, 1st edn. S. Karger, Basel

    Book  Google Scholar 

  68. Daines RA, Chambers PA, Foley JJ, Griswold DE, Kingsbury WD, Martin LD, Schmidt DB, Sham KKC, Sarau HM (1996) (E)-3-[6-[[(2,6-Dichlorophenyl)thio]methyl]-3-(2-phenylethoxy)-2-pyridinyl]-2- propenoic acid: a high-affinity leukotriene B4 receptor antagonist with oral antiinflammatory activity. J Med Chem 39:3837–3841

    Article  CAS  Google Scholar 

  69. Cohen N, Bizzarro FT, May WP, Toth K, Lee FK, Heslin PH, Holland GW, Kwoh SC, Franco LS, Simko BA, Yagaloff KA (1994) Benzenepropanoic acids containing chromanone or naphthalenone moieties are potent and orally active leukotriene B4 antagonists. Bioorg Med Chem Lett 4:2883–2888

    Article  CAS  Google Scholar 

  70. Psychoyos S, Uziel-Fusi S, Morrissey MM, Ganu V, Smith CW (1991) Thick filter neutrophil chemotaxis performed in the absence of albumin. J Immunol Methods 137:37–46

    Article  CAS  Google Scholar 

  71. Taylor BM, Crittenden NJ, Bruden MN, Wishka DG, Morris J, Richards IM, Sun FF (1991) Biological activity of leukotriene B4 analogs: inhibition of guinea pig eosinophil migration in vitro by the 2,6-disubstituted pyridine analogs U-75,302 and U-75,485. Prostaglandins 42:211–224

    Article  CAS  Google Scholar 

  72. Yokomizo T, Kato K, Terawaki K, Izumi T, Shimizu T (2000) A second leukotriene B(4) receptor, BLT2: a new therapeutic target in inflammation and immunological disorders. J Exp Med 192:421–432

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Science and Technology Development Fund, STDF, Egypt (Grant No. 7972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. A. Ibrahim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1371 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.A.A., Hassan, A.M.A. Comparative Modeling and Evaluation of Leukotriene B4 Receptors for Selective Drug Discovery Towards the Treatment of Inflammatory Diseases. Protein J 37, 518–530 (2018). https://doi.org/10.1007/s10930-018-9797-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-018-9797-3

Keywords

Navigation